Knowledge learning with crowdsourcing: A brief review and systematic perspective

J Zhang - IEEE/CAA Journal of Automatica Sinica, 2022 - ieeexplore.ieee.org
Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity,
and uncertainty, which lead the knowledge learning from them full of challenges. With the …

Early-learning regularization prevents memorization of noisy labels

S Liu, J Niles-Weed, N Razavian… - Advances in neural …, 2020 - proceedings.neurips.cc
We propose a novel framework to perform classification via deep learning in the presence of
noisy annotations. When trained on noisy labels, deep neural networks have been observed …

Combating noisy labels by agreement: A joint training method with co-regularization

H Wei, L Feng, X Chen, B An - Proceedings of the IEEE/CVF …, 2020 - openaccess.thecvf.com
Deep Learning with noisy labels is a practically challenging problem in weakly-supervised
learning. The state-of-the-art approaches" Decoupling" and" Co-teaching+" claim that the" …

Disc: Learning from noisy labels via dynamic instance-specific selection and correction

Y Li, H Han, S Shan, X Chen - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Existing studies indicate that deep neural networks (DNNs) can eventually memorize the
label noise. We observe that the memorization strength of DNNs towards each instance is …

How does disagreement help generalization against label corruption?

X Yu, B Han, J Yao, G Niu, I Tsang… - … on machine learning, 2019 - proceedings.mlr.press
Learning with noisy labels is one of the hottest problems in weakly-supervised learning.
Based on memorization effects of deep neural networks, training on small-loss instances …

Co-teaching: Robust training of deep neural networks with extremely noisy labels

B Han, Q Yao, X Yu, G Niu, M Xu… - Advances in neural …, 2018 - proceedings.neurips.cc
Deep learning with noisy labels is practically challenging, as the capacity of deep models is
so high that they can totally memorize these noisy labels sooner or later during training …

Image classification with deep learning in the presence of noisy labels: A survey

G Algan, I Ulusoy - Knowledge-Based Systems, 2021 - Elsevier
Image classification systems recently made a giant leap with the advancement of deep
neural networks. However, these systems require an excessive amount of labeled data to be …

Twin contrastive learning with noisy labels

Z Huang, J Zhang, H Shan - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Learning from noisy data is a challenging task that significantly degenerates the model
performance. In this paper, we present TCL, a novel twin contrastive learning model to learn …

Understanding and utilizing deep neural networks trained with noisy labels

P Chen, BB Liao, G Chen… - … conference on machine …, 2019 - proceedings.mlr.press
Noisy labels are ubiquitous in real-world datasets, which poses a challenge for robustly
training deep neural networks (DNNs) as DNNs usually have the high capacity to memorize …

Instance-dependent label-noise learning with manifold-regularized transition matrix estimation

D Cheng, T Liu, Y Ning, N Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
In label-noise learning, estimating the transition matrix has attracted more and more
attention as the matrix plays an important role in building statistically consistent classifiers …