Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges

A Aldoseri, KN Al-Khalifa, AM Hamouda - Applied Sciences, 2023 - mdpi.com
The use of artificial intelligence (AI) is becoming more prevalent across industries such as
healthcare, finance, and transportation. Artificial intelligence is based on the analysis of …

Deep neural networks and tabular data: A survey

V Borisov, T Leemann, K Seßler, J Haug… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous tabular data are the most commonly used form of data and are essential for
numerous critical and computationally demanding applications. On homogeneous datasets …

[HTML][HTML] Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions

L Longo, M Brcic, F Cabitza, J Choi, R Confalonieri… - Information …, 2024 - Elsevier
Understanding black box models has become paramount as systems based on opaque
Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response …

A systematic review of explainable artificial intelligence in terms of different application domains and tasks

MR Islam, MU Ahmed, S Barua, S Begum - Applied Sciences, 2022 - mdpi.com
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved
and are now being employed in almost every application domain to develop automated or …

A survey of algorithmic recourse: contrastive explanations and consequential recommendations

AH Karimi, G Barthe, B Schölkopf, I Valera - ACM Computing Surveys, 2022 - dl.acm.org
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …

Artificial intelligence, systemic risks, and sustainability

V Galaz, MA Centeno, PW Callahan, A Causevic… - Technology in …, 2021 - Elsevier
Automated decision making and predictive analytics through artificial intelligence, in
combination with rapid progress in technologies such as sensor technology and robotics are …

Transformer interpretability beyond attention visualization

H Chefer, S Gur, L Wolf - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Self-attention techniques, and specifically Transformers, are dominating the field of text
processing and are becoming increasingly popular in computer vision classification tasks. In …

[图书][B] Human-centered AI

B Shneiderman - 2022 - books.google.com
The remarkable progress in algorithms for machine and deep learning have opened the
doors to new opportunities, and some dark possibilities. However, a bright future awaits …

What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research

M Langer, D Oster, T Speith, H Hermanns, L Kästner… - Artificial Intelligence, 2021 - Elsevier
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …