[HTML][HTML] Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges

W Wei, H Dai - Bioactive materials, 2021 - Elsevier
In spite of the considerable achievements in the field of regenerative medicine in the past
several decades, osteochondral defect regeneration remains a challenging issue among …

Crosslinking strategies for 3D bioprinting of polymeric hydrogels

A GhavamiNejad, N Ashammakhi, XY Wu… - Small, 2020 - Wiley Online Library
Abstract Three‐dimensional (3D) bioprinting has recently advanced as an important tool to
produce viable constructs that can be used for regenerative purposes or as tissue models …

Progress of microfluidic hydrogel‐based scaffolds and organ‐on‐chips for the cartilage tissue engineering

H Tolabi, N Davari, M Khajehmohammadi… - Advanced …, 2023 - Wiley Online Library
Cartilage degeneration is among the fundamental reasons behind disability and pain across
the globe. Numerous approaches have been employed to treat cartilage diseases …

3D extrusion bioprinting

YS Zhang, G Haghiashtiani, T Hübscher… - Nature Reviews …, 2021 - nature.com
Abstract Three-dimensional (3D) bioprinting strategies use computer-aided processes to
enable automated simultaneous spatial patterning of cells and/or biomaterials. These …

3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu‐Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering

H Zhu, M Monavari, K Zheng, T Distler, L Ouyang… - Small, 2022 - Wiley Online Library
Bioprinting has seen significant progress in recent years for the fabrication of bionic tissues
with high complexity. However, it remains challenging to develop cell‐laden bioinks …

Polymeric systems for bioprinting

ML Bedell, AM Navara, Y Du, S Zhang… - Chemical …, 2020 - ACS Publications
Bioprinting is rapidly being adopted as a major method for fabricating tissue engineering
constructs. Through the precise deposition of cell-and bioactive molecule-laden materials …

Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior

E Mancha Sánchez, JC Gómez-Blanco… - … in Bioengineering and …, 2020 - frontiersin.org
Nowadays, bioprinting is rapidly evolving and hydrogels are a key component for its
success. In this sense, synthesis of hydrogels, as well as bioprinting process, and cross …

[HTML][HTML] Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives

X Niu, N Li, Z Du, X Li - Bioactive Materials, 2023 - Elsevier
The osteochondral defect repair has been most extensively studied due to the rising
demand for new therapies to diseases such as osteoarthritis. Tissue engineering has been …

[HTML][HTML] 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization

J Zhang, H Eyisoylu, XH Qin, M Rubert, R Müller - Acta Biomaterialia, 2021 - Elsevier
Bioprinting is a promising technique for facilitating the fabrication of engineered bone
tissues for patient-specific defect repair and for developing in vitro tissue/organ models for …

3D printing of inorganic-biopolymer composites for bone regeneration

D van der Heide, G Cidonio, MJ Stoddart… - Biofabrication, 2022 - iopscience.iop.org
In most cases, bone injuries heal without complications, however, there is an increasing
number of instances where bone healing needs major clinical intervention. Available …