Learning continuous models for continuous physics

AS Krishnapriyan, AF Queiruga, NB Erichson… - Communications …, 2023 - nature.com
Dynamical systems that evolve continuously over time are ubiquitous throughout science
and engineering. Machine learning (ML) provides data-driven approaches to model and …

Neural Differential Recurrent Neural Network with Adaptive Time Steps

Y Tan, L Xie, X Cheng - arXiv preprint arXiv:2306.01674, 2023 - arxiv.org
The neural Ordinary Differential Equation (ODE) model has shown success in learning
complex continuous-time processes from observations on discrete time stamps. In this work …

New perspectives for the intelligent rolling stock classification in railways: an artificial neural networks-based approach

URF Dias, AC Vargas e Pinto, HLM Monteiro… - Journal of the Brazilian …, 2024 - Springer
In railway operations, several factors must be analyzed, such as operation cost,
maintenance stops, failures, and others. One of these important topics is the analysis of the …

Incorporating NODE with pre-trained neural differential operator for learning dynamics

S Gong, Q Meng, Y Wang, L Wu, W Chen, Z Ma, TY Liu - Neurocomputing, 2023 - Elsevier
Learning dynamics governed by differential equations is crucial for predicting and
controlling the systems in science and engineering. Neural Ordinary Differential Equation …

Representation Learning and Deep Generative Modeling in Dynamical Systems

JY Franceschi - 2022 - theses.hal.science
The recent rise of deep learning has been motivated by numerous scientific breakthroughs,
particularly regarding representation learning and generative modeling. However, most of …

Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques

JY Franceschi - 2022 - theses.fr
Résumé L'essor de l'apprentissage profond trouve notamment sa source dans les avancées
scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles …