Abelian varieties of prescribed order over finite fields

R van Bommel, E Costa, W Li, B Poonen… - arXiv preprint arXiv …, 2021 - arxiv.org
Given a prime power $ q $ and $ n\gg 1$, we prove that every integer in a large subinterval
of the Hasse--Weil interval $[(\sqrt {q}-1)^{2n},(\sqrt {q}+ 1)^{2n}] $ is $# A (\mathbb {F} _q) …

Abelian varieties over finite fields and their groups of rational points

S Marseglia, C Springer - arXiv preprint arXiv:2211.15280, 2022 - arxiv.org
We study the groups of rational points of abelian varieties defined over a finite field $\mathbb
{F} _q $ whose endomorphism rings are commutative, or, equivalently, whose isogeny …

Frobenius finds non-monogenic division fields of abelian varieties

H Smith - International Journal of Number Theory, 2022 - World Scientific
Let A be an abelian variety over a finite field k with| k|= q= pm. Let π∈ End k (A) denote the
Frobenius and let v= q π− 1 denote Verschiebung. Suppose the Weil q-polynomial of A is …

Every positive integer is the order of an ordinary abelian variety over

EW Howe, KS Kedlaya - Research in Number Theory, 2021 - Springer
Every positive integer is the order of an ordinary abelian variety over $${{\mathbb {F}}}_2$$ |
Research in Number Theory Skip to main content SpringerLink Log in Menu Find a journal …

[PDF][PDF] Abelian varieties over 𝔽2 of prescribed order

KS Kedlaya - Publications mathématiques de Besançon. Algèbre et …, 2024 - par.nsf.gov
We prove that for every positive integer m, there exist infinitely many simple abelian varieties
over F2 of order m. The method is constructive, building on the work of Madan–Pal in the …

Abelian varieties over of prescribed order

KS Kedlaya - arXiv preprint arXiv:2107.12453, 2021 - arxiv.org
We prove that for every positive integer $ m $, there exist infinitely many simple abelian
varieties over $\mathbb {F} _2 $ of order $ m $. The method is constructive, building on the …