A review of deep learning methods for semantic segmentation of remote sensing imagery

X Yuan, J Shi, L Gu - Expert Systems with Applications, 2021 - Elsevier
Semantic segmentation of remote sensing imagery has been employed in many
applications and is a key research topic for decades. With the success of deep learning …

[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification

Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …

Hyperspectral image transformer classification networks

X Yang, W Cao, Y Lu, Y Zhou - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification is an important task in earth observation missions.
Convolution neural networks (CNNs) with the powerful ability of feature extraction have …

Graph information aggregation cross-domain few-shot learning for hyperspectral image classification

Y Zhang, W Li, M Zhang, S Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Most domain adaptation (DA) methods in cross-scene hyperspectral image classification
focus on cases where source data (SD) and target data (TD) with the same classes are …

Spatial-spectral transformer for hyperspectral image classification

X He, Y Chen, Z Lin - Remote Sensing, 2021 - mdpi.com
Recently, a great many deep convolutional neural network (CNN)-based methods have
been proposed for hyperspectral image (HSI) classification. Although the proposed CNN …

Applications of deep learning in precision weed management: A review

N Rai, Y Zhang, BG Ram, L Schumacher… - … and Electronics in …, 2023 - Elsevier
Deep Learning (DL) has been described as one of the key subfields of Artificial Intelligence
(AI) that is transforming weed detection for site-specific weed management (SSWM). In the …

Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification

H Zhou, F Luo, H Zhuang, Z Weng… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) for hyperspectral image (HSI) classification have
generated good progress. Meanwhile, graph convolutional networks (GCNs) have also …

Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification

Y Ding, Z Zhang, X Zhao, D Hong, W Cai… - Expert Systems with …, 2023 - Elsevier
Hyperspectral image (HSI) classification has attracted wide attention in many fields.
Applying Graph Neural Network (GNN) to HSI classification is one of the research frontiers …

Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review

A Vali, S Comai, M Matteucci - Remote Sensing, 2020 - mdpi.com
Lately, with deep learning outpacing the other machine learning techniques in classifying
images, we have witnessed a growing interest of the remote sensing community in …