Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges

S Qiu, H Zhao, N Jiang, Z Wang, L Liu, Y An, H Zhao… - Information …, 2022 - Elsevier
This paper firstly introduces common wearable sensors, smart wearable devices and the key
application areas. Since multi-sensor is defined by the presence of more than one model or …

Deep learning for motor imagery EEG-based classification: A review

A Al-Saegh, SA Dawwd, JM Abdul-Jabbar - Biomedical Signal Processing …, 2021 - Elsevier
Objectives The availability of large and varied Electroencephalogram (EEG) datasets,
rapidly advances and inventions in deep learning techniques, and highly powerful and …

EEG conformer: Convolutional transformer for EEG decoding and visualization

Y Song, Q Zheng, B Liu, X Gao - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Due to the limited perceptual field, convolutional neural networks (CNN) only extract local
temporal features and may fail to capture long-term dependencies for EEG decoding. In this …

[HTML][HTML] Decoding speech perception from non-invasive brain recordings

A Défossez, C Caucheteux, J Rapin, O Kabeli… - Nature Machine …, 2023 - nature.com
Decoding speech from brain activity is a long-awaited goal in both healthcare and
neuroscience. Invasive devices have recently led to major milestones in this regard: deep …

Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface

AM Roy - Engineering Applications of Artificial Intelligence, 2022 - Elsevier
Abstract Objective. Deep learning (DL)-based brain–computer interface (BCI) in motor
imagery (MI) has emerged as a powerful method for establishing direct communication …

[HTML][HTML] Deep learning for electroencephalogram (EEG) classification tasks: a review

A Craik, Y He, JL Contreras-Vidal - Journal of neural engineering, 2019 - iopscience.iop.org
Objective. Electroencephalography (EEG) analysis has been an important tool in
neuroscience with applications in neuroscience, neural engineering (eg Brain–computer …

[HTML][HTML] Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

Data augmentation for deep-learning-based electroencephalography

E Lashgari, D Liang, U Maoz - Journal of Neuroscience Methods, 2020 - Elsevier
Background Data augmentation (DA) has recently been demonstrated to achieve
considerable performance gains for deep learning (DL)—increased accuracy and stability …

Physics-informed attention temporal convolutional network for EEG-based motor imagery classification

H Altaheri, G Muhammad… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
The brain-computer interface (BCI) is a cutting-edge technology that has the potential to
change the world. Electroencephalogram (EEG) motor imagery (MI) signal has been used …

Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion

SU Amin, M Alsulaiman, G Muhammad… - Future Generation …, 2019 - Elsevier
Electroencephalography (EEG) motor imagery (MI) signals have recently gained a lot of
attention as these signals encode a person's intent of performing an action. Researchers …