Reduction theorems for weighted integral inequalities on the cone of monotone functions

A Gogatishvili, VD Stepanov - Russian Mathematical Surveys, 2013 - iopscience.iop.org
This paper surveys results related to the reduction of integral inequalities involving positive
operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of …

Редукционные теоремы для весовых интегральных неравенств на конусе монотонных функций

А Гогатишвили, ВД Степанов - Успехи математических наук, 2013 - mathnet.ru
Редукционные теоремы для весовых интегральных неравенств на конусе м Page 1 2013 г.
июль — август т. 68, вып. 4(412) УСПЕХИ МАТЕМАТИЧЕСКИХ НАУК УДК 517.51 …

Weighted iterated Hardy-type inequalities

A Gogatishvili, R Mustafayev - arXiv preprint arXiv:1503.04079, 2015 - arxiv.org
In this paper a reduction and equivalence theorems for the boundedness of the composition
of a quasilinear operator $ T $ with the Hardy and Copson operators in weighted Lebesgue …

Some New Iterated Hardy‐Type Inequalities

A Gogatishvili, RC Mustafayev… - Journal of Function …, 2012 - Wiley Online Library
We characterize the validity of the Hardy‐type inequality∥∥∫ s∞ h (z) dz∥ p, u,(0, t)∥ q,
w,(0,∞)≤ c∥ h∥ θ, v (0,∞), where 0< p<∞, 0< q≤∞, 1< θ≤∞, u, w, and v are weight …

Iterating bilinear Hardy inequalities

M Křepela - Proceedings of the Edinburgh Mathematical Society, 2017 - cambridge.org
An iteration technique for characterizing boundedness of certain types of multilinear
operators is presented, reducing the problem to a corresponding linear-operator case. The …

Weighted inequalities for a superposition of the Copson operator and the Hardy operator

A Gogatishvili, Z Mihula, L Pick, H Turčinová… - Journal of Fourier …, 2022 - Springer
We study a three-weight inequality for the superposition of the Hardy operator and the
Copson operator, namely (∫ ab (∫ tb (∫ asf (τ) pv (τ) d τ) qpu (s) ds) rqw (t) dt) 1 r≤ C∫ …

[HTML][HTML] Reduction theorems for operators on the cones of monotone functions

A Gogatishvili, VD Stepanov - Journal of Mathematical Analysis and …, 2013 - Elsevier
For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of
monotone functions in the Lp− Lq setting for 0< q<∞, 1≤ p<∞. The case 0< p< 1 is also …

Some new iterated Hardy-type inequalities: the case

A Gogatishvili, R Mustafayev, LE Persson - Journal of Inequalities and …, 2013 - Springer
In this paper we characterize the validity of the Hardy-type inequality∥∥∫ s∞ h (z) dz∥ p,
u,(0, t)∥ q, w,(0,∞)≤ c∥ h∥ 1, v,(0,∞), where 0< p<∞, 0< q≤+∞, u, w and v are weight …

Bilinear weighted Hardy inequality for nonincreasing functions

M Křepela - 2017 - projecteuclid.org
We characterize the validity of the bilinear Hardy inequality for nonincreasing functions
‖f^**g^**‖_L^q(w)≤C‖f‖_Λ^p_1(v_1)‖g‖_Λ^p_2(v_2), in terms of the weights v_1 …

Norms of maximal functions between generalized and classical Lorentz spaces

R Mustafayev, N Bilgiçli, M Yılmaz - arXiv preprint arXiv:2110.13698, 2021 - arxiv.org
In this paper we calculate the norm of the generalized maximal operator $ M_
{\phi,\Lambda^{\alpha}(b)} $, defined with $0<\alpha<\infty $ and functions $ b,\,\phi:(0,\infty) …