А Гогатишвили, ВД Степанов - Успехи математических наук, 2013 - mathnet.ru
Редукционные теоремы для весовых интегральных неравенств на конусе м Page 1 2013 г. июль — август т. 68, вып. 4(412) УСПЕХИ МАТЕМАТИЧЕСКИХ НАУК УДК 517.51 …
In this paper a reduction and equivalence theorems for the boundedness of the composition of a quasilinear operator $ T $ with the Hardy and Copson operators in weighted Lebesgue …
We characterize the validity of the Hardy‐type inequality∥∥∫ s∞ h (z) dz∥ p, u,(0, t)∥ q, w,(0,∞)≤ c∥ h∥ θ, v (0,∞), where 0< p<∞, 0< q≤∞, 1< θ≤∞, u, w, and v are weight …
M Křepela - Proceedings of the Edinburgh Mathematical Society, 2017 - cambridge.org
An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The …
We study a three-weight inequality for the superposition of the Hardy operator and the Copson operator, namely (∫ ab (∫ tb (∫ asf (τ) pv (τ) d τ) qpu (s) ds) rqw (t) dt) 1 r≤ C∫ …
A Gogatishvili, VD Stepanov - Journal of Mathematical Analysis and …, 2013 - Elsevier
For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in the Lp− Lq setting for 0< q<∞, 1≤ p<∞. The case 0< p< 1 is also …
In this paper we characterize the validity of the Hardy-type inequality∥∥∫ s∞ h (z) dz∥ p, u,(0, t)∥ q, w,(0,∞)≤ c∥ h∥ 1, v,(0,∞), where 0< p<∞, 0< q≤+∞, u, w and v are weight …
We characterize the validity of the bilinear Hardy inequality for nonincreasing functions ‖f^**g^**‖_L^q(w)≤C‖f‖_Λ^p_1(v_1)‖g‖_Λ^p_2(v_2), in terms of the weights v_1 …
R Mustafayev, N Bilgiçli, M Yılmaz - arXiv preprint arXiv:2110.13698, 2021 - arxiv.org
In this paper we calculate the norm of the generalized maximal operator $ M_ {\phi,\Lambda^{\alpha}(b)} $, defined with $0<\alpha<\infty $ and functions $ b,\,\phi:(0,\infty) …