Synergistic pretraining of parametrized quantum circuits via tensor networks

MS Rudolph, J Miller, D Motlagh, J Chen… - Nature …, 2023 - nature.com
Parametrized quantum circuits (PQCs) represent a promising framework for using present-
day quantum hardware to solve diverse problems in materials science, quantum chemistry …

Synergy between quantum circuits and tensor networks: Short-cutting the race to practical quantum advantage

MS Rudolph, J Miller, D Motlagh, J Chen… - arXiv preprint arXiv …, 2022 - arxiv.org
While recent breakthroughs have proven the ability of noisy intermediate-scale quantum
(NISQ) devices to achieve quantum advantage in classically-intractable sampling tasks, the …

Discriminating mixed qubit states with collective measurements

LO Conlon, F Eilenberger, PK Lam… - Communications …, 2023 - nature.com
It is a central fact in quantum mechanics that non-orthogonal states cannot be distinguished
perfectly. In general, the optimal measurement for distinguishing such states is a collective …

Compact quantum kernel-based binary classifier

C Blank, AJ Da Silva, LP de Albuquerque… - Quantum Science …, 2022 - iopscience.iop.org
Quantum computing opens exciting opportunities for kernel-based machine learning
methods, which have broad applications in data analysis. Recent works show that quantum …

A Modular Engine for Quantum Monte Carlo Integration

IY Akhalwaya, A Connolly, R Guichard… - arXiv preprint arXiv …, 2023 - arxiv.org
We present the Quantum Monte Carlo Integration (QMCI) engine developed by Quantinuum.
It is a quantum computational tool for evaluating multi-dimensional integrals that arise in …

[HTML][HTML] Optimal qubit mapping search for encoding classical data into matrix product state representation with minimal loss

H Jeon, K Lee, D Lee, B Kim, T Kim - Physics Letters A, 2024 - Elsevier
Matrix product state (MPS) offers a framework for encoding classical data into quantum
states, enabling the efficient utilization of quantum resources for data representation and …

Tensor network efficiently representing Schmidt decomposition of quantum many-body states

PF Zhou, Y Lu, JH Wang, SJ Ran - Physical Review Letters, 2023 - APS
Efficient methods to access the entanglement of a quantum many-body state, where the
complexity generally scales exponentially with the system size N, have long been a concern …

[PDF][PDF] 基于紧凑型编码与多项式核的量子分类器研究

贾瑞虹, 杨光, 聂敏, 刘原华, 张美玲 - Laser & Optoelectronics …, 2024 - researching.cn
摘要核方法在机器学习中有广泛的应用. 量子计算与核方法结合, 可以有效解决经典核方法中当
特征空间变大时计算成本随之增加的问题. 研究表明, 基于核方法构建的最小化量子电路可以 …

The State Preparation of Multivariate Normal Distributions using Tree Tensor Network

H Manabe, Y Sano - arXiv preprint arXiv:2412.12067, 2024 - arxiv.org
The quantum state preparation of probability distributions is an important subroutine for
many quantum algorithms. When embedding $ D $-dimensional multivariate probability …

Scalable and shallow quantum circuits encoding probability distributions informed by asymptotic entanglement analysis

V Bohun, I Lukin, M Luhanko, G Korpas… - arXiv preprint arXiv …, 2024 - arxiv.org
Encoding classical data in a quantum state is a key prerequisite of many quantum
algorithms. Recently matrix product state (MPS) methods emerged as the most promising …