Algorithmic bias: review, synthesis, and future research directions

N Kordzadeh, M Ghasemaghaei - European Journal of Information …, 2022 - Taylor & Francis
As firms are moving towards data-driven decision making, they are facing an emerging
problem, namely, algorithmic bias. Accordingly, algorithmic systems can yield socially …

What is human-centered about human-centered AI? A map of the research landscape

T Capel, M Brereton - Proceedings of the 2023 CHI conference on …, 2023 - dl.acm.org
The application of Artificial Intelligence (AI) across a wide range of domains comes with both
high expectations of its benefits and dire predictions of misuse. While AI systems have …

Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration

F Fui-Hoon Nah, R Zheng, J Cai, K Siau… - Journal of Information …, 2023 - Taylor & Francis
Artificial intelligence (AI) has elicited much attention across disciplines and industries (Hyder
et al., 2019). AI has been defined as “a system's ability to correctly interpret external data, to …

What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research

M Langer, D Oster, T Speith, H Hermanns, L Kästner… - Artificial Intelligence, 2021 - Elsevier
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …

Expanding explainability: Towards social transparency in ai systems

U Ehsan, QV Liao, M Muller, MO Riedl… - Proceedings of the 2021 …, 2021 - dl.acm.org
As AI-powered systems increasingly mediate consequential decision-making, their
explainability is critical for end-users to take informed and accountable actions. Explanations …

Towards a science of human-ai decision making: a survey of empirical studies

V Lai, C Chen, QV Liao, A Smith-Renner… - arXiv preprint arXiv …, 2021 - arxiv.org
As AI systems demonstrate increasingly strong predictive performance, their adoption has
grown in numerous domains. However, in high-stakes domains such as criminal justice and …

Understanding accountability in algorithmic supply chains

J Cobbe, M Veale, J Singh - Proceedings of the 2023 ACM Conference …, 2023 - dl.acm.org
Academic and policy proposals on algorithmic accountability often seek to understand
algorithmic systems in their socio-technical context, recognising that they are produced by …

Questioning the AI: informing design practices for explainable AI user experiences

QV Liao, D Gruen, S Miller - Proceedings of the 2020 CHI conference on …, 2020 - dl.acm.org
A surge of interest in explainable AI (XAI) has led to a vast collection of algorithmic work on
the topic. While many recognize the necessity to incorporate explainability features in AI …

Towards transparency by design for artificial intelligence

H Felzmann, E Fosch-Villaronga, C Lutz… - … and engineering ethics, 2020 - Springer
In this article, we develop the concept of Transparency by Design that serves as practical
guidance in helping promote the beneficial functions of transparency while mitigating its …

Towards a science of human-AI decision making: An overview of design space in empirical human-subject studies

V Lai, C Chen, A Smith-Renner, QV Liao… - Proceedings of the 2023 …, 2023 - dl.acm.org
AI systems are adopted in numerous domains due to their increasingly strong predictive
performance. However, in high-stakes domains such as criminal justice and healthcare, full …