Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

[HTML][HTML] Artificial intelligence and computational pathology

M Cui, DY Zhang - Laboratory Investigation, 2021 - Elsevier
Data processing and learning has become a spearhead for the advancement of medicine,
with pathology and laboratory medicine has no exception. The incorporation of scientific …

Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning

B Li, Y Li, KW Eliceiri - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We address the challenging problem of whole slide image (WSI) classification. WSIs have
very high resolutions and usually lack localized annotations. WSI classification can be cast …

The impact of site-specific digital histology signatures on deep learning model accuracy and bias

FM Howard, J Dolezal, S Kochanny, J Schulte… - Nature …, 2021 - nature.com
Abstract The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital
histology. Deep learning (DL) models have been trained on TCGA to predict numerous …

Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks

J Yao, X Zhu, J Jonnagaddala, N Hawkins… - Medical Image Analysis, 2020 - Elsevier
Traditional image-based survival prediction models rely on discriminative patch labeling
which make those methods not scalable to extend to large datasets. Recent studies have …

A survey on explainable artificial intelligence (xai): Toward medical xai

E Tjoa, C Guan - IEEE transactions on neural networks and …, 2020 - ieeexplore.ieee.org
Recently, artificial intelligence and machine learning in general have demonstrated
remarkable performances in many tasks, from image processing to natural language …

Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology

K Bera, KA Schalper, DL Rimm, V Velcheti… - Nature reviews Clinical …, 2019 - nature.com
In the past decade, advances in precision oncology have resulted in an increased demand
for predictive assays that enable the selection and stratification of patients for treatment. The …

Machine unlearning

L Bourtoule, V Chandrasekaran… - … IEEE Symposium on …, 2021 - ieeexplore.ieee.org
Once users have shared their data online, it is generally difficult for them to revoke access
and ask for the data to be deleted. Machine learning (ML) exacerbates this problem because …

Clinical-grade computational pathology using weakly supervised deep learning on whole slide images

G Campanella, MG Hanna, L Geneslaw, A Miraflor… - Nature medicine, 2019 - nature.com
The development of decision support systems for pathology and their deployment in clinical
practice have been hindered by the need for large manually annotated datasets. To …

Deep neural network models for computational histopathology: A survey

CL Srinidhi, O Ciga, AL Martel - Medical image analysis, 2021 - Elsevier
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …