Adaptive VMD and multi-stage stabilized transformer-based long-distance forecasting for multiple shield machine tunneling parameters

C Qin, G Huang, H Yu, Z Zhang, J Tao, C Liu - Automation in Construction, 2024 - Elsevier
Achieving multivariate long-distance forecasting of shield machine tunneling parameters
remains a challenge due to the huge number of tunneling parameters and the complexity of …

[PDF][PDF] 隧道掘进机大数据研究进展: 数据挖掘助推隧道挖掘

石茂林, 孙伟, 宋学官 - 机械工程学报, 2021 - qikan.cmes.org
随着传感与智能化技术不断发展, 隧道掘进机的运行监测日趋完善, 所记录的海量实测数据不仅
包含了装备作业过程的重要信息, 也蕴含了装备内部及其与外部环境的相互作用机理 …

Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm

K Elbaz, SL Shen, A Zhou, DJ Yuan, YS Xu - Applied Sciences, 2019 - mdpi.com
The prediction of earth pressure balance (EPB) shield performance is an essential part of
project scheduling and cost estimation of tunneling projects. This paper establishes an …

Predicting TBM performance in soft sedimentary rocks, case study of Zagros mountains water tunnel projects

S Goodarzi, J Hassanpour, S Yagiz… - … and Underground Space …, 2021 - Elsevier
Soft rock formations are widespread throughout the mountainous regions of the world
including the mountains of western and southern Iran. Therefore, it is very common to pass …

Predictive control of slurry pressure balance in shield tunneling using diagonal recurrent neural network and evolved particle swarm optimization

X Li, G Gong - Automation in Construction, 2019 - Elsevier
Establishing the balance between slurry supporting pressure and expected water-earth
pressure is an important criterion to ensure excavating face stability in shield tunneling. To …

Prediction of TBM penetration rate based on Monte Carlo-BP neural network

M Wei, Z Wang, X Wang, J Peng, Y Song - Neural Computing and …, 2021 - Springer
Based on the BP neural network model of machine learning method, the corresponding
random input parameters are generated by Monte Carlo method, and the prediction of TBM …

[PDF][PDF] Research progress on big data of tunnel boring machine: How data mining can help tunnel boring

石茂林, 孙伟, 宋学官 - Journal of Mechanical Engineering, 2021 - qikan.cmes.org
With the application of micro-nano technology, the new generation of detonators based on
MEMS technology has become one of the research hot spots in the field of energetic …

The influence of rock and rock mass properties towards prediction of TBM penetration rates

H Wannenmacher, R Fuentes Gutierrez, F Amann… - 2024 - publications.rwth-aachen.de
Kurzfassung Die Leistung von Tunnelbohrmaschinen (TBM) wird maßgeblich von den
Eigenschaften desabzubauenden Gesteins und Gebirges beeinflusst. In den letzten Jahren …

Predicting tunnel-boring machine penetration rate utilizing geomechanical properties

SS Karrari, M Heidari, JK Hamidi… - Quarterly Journal of …, 2022 - lyellcollection.org
Predicting the penetration rate plays a key role in tunnel projects using a tunnel-boring
machine (TBM). Developing accurate prediction models can improve project management …

[PDF][PDF] Vortriebsbegleitende Anwendung von Prozesssimulationen im maschinellen Tunnelbau zur Aktualisierung der Leistungsprognose und Optimierung von …

A Jodehl - 2024 - d-nb.info
Diese Arbeit entstand im Rahmen der Mitarbeit im Sonderforschungsbereichs SFB 837 im
Teilprojekt C3. Den Kolleg* innen des SFB's möchte ich an dieser Stelle für die gute …