C Stump - Journal of Algebraic Combinatorics, 2010 - Springer
In type A, the q, t-Fuß–Catalan numbers can be defined as the bigraded Hilbert series of a module associated to the symmetric group. We generalize this construction to (finite) …
M Cuntz, C Stump - Mathematics of Computation, 2015 - ams.org
We discuss properties of root posets for finite crystallographic root systems, and show that these properties uniquely determine root posets for the noncrystallographic dihedral types …
P Lampe - Experimental Mathematics, 2018 - Taylor & Francis
ABSTRACT We study Fomin–Zelevinsky's mutation rule in the context of non- crystallographic root systems. In particular, we construct approximately periodic sequences …
C Stump - arXiv preprint arXiv:0808.2822, 2008 - Citeseer
First, we investigate a generalization of the area statistic on Dyck paths for all crystallographic reflection groups. In particular, we explore Dyck paths of type B together …
A Fink, BI Giraldo - Discrete Mathematics & Theoretical …, 2009 - dmtcs.episciences.org
We present typepreserving bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections …
V Ripoll - arXiv preprint arXiv:1010.4349, 2010 - arxiv.org
Reflection groups, geometry of the discriminant and noncrossing partitions. When W is a well-generated complex reflection group, the noncrossing partition lattice NCP_W of type W …
The absolute order on the hyperoctahedral group B n is investigated. Using a poset fiber theorem, it is proved that the order ideal of this poset generated by the Coxeter elements is …
Résumé Lorsque W est un groupe de réflexion complexe bien engendré, le treillis ncpW des partitions non-croisées de type W est un objet combinatoire très riche, généralisant la notion …