Dynamics of rational surface automorphisms: linear fractional recurrences

E Bedford, K Kim - Journal of Geometric Analysis, 2009 - Springer
We consider the family fa, b (x, y)=(y,(y+ a)/(x+ b)) of birational maps of the plane and the
parameter values (a, b) for which fa, b gives an automorphism of a rational surface. In …

Periodic points of birational transformations on projective surfaces

X Junyi - 2015 - projecteuclid.org
We give a classification of birational transformations on smooth projective surfaces which
have a Zariski-dense set of noncritical periodic points. In particular, we show that if the first …

Dynamics of automorphisms of compact complex surfaces

S Cantat - Frontiers in complex dynamics, 2014 - degruyter.com
Dynamics of automorphisms of compact complex surfaces Page 1 noColor January 6, 2014
7x10 Dynamics of automorphisms of compact complex surfaces Serge Cantat ABSTRACT …

[PDF][PDF] Propriétés ergodiques des applications rationnelles

V Guedj - Quelques aspects des systèmes dynamiques …, 2010 - perso.univ-rennes1.fr
Résumé Soit f: X→ X une transformation rationnelle d'une variété projective complexe
compacte. Nous étudions la dynamique d'une telle application d'un point de vue statistique …

Random dynamics on real and complex projective surfaces

S Cantat, R Dujardin - Journal für die reine und angewandte …, 2023 - degruyter.com
We initiate the study of random iteration of automorphisms of real and complex projective
surfaces, as well as compact Kähler surfaces, focusing on the classification of stationary …

Invariant hypersurfaces in holomorphic dynamics

S Cantat - Mathematical Research Letters, 2010 - intlpress.com
We prove the following result, which is analogous to two theorems, one due to Kodaira and
Krasnov and another one due to Jouanolou and Ghys. Let $ M $ be a compact complex …

Cremona transformations, surface automorphisms, and plane cubics

J Diller - Michigan Math. J, 2011 - projecteuclid.org
Every automorphism of the complex projective plane P2 is linear and therefore behaves
quite simply when iterated. It is natural to seek other rational complex surfaces—for instance …

Finite orbits for large groups of automorphisms of projective surfaces

S Cantat, R Dujardin - arXiv preprint arXiv:2012.01762, 2020 - arxiv.org
We study finite orbits for non-elementary groups of automorphisms of compact projective
surfaces. In particular we prove that if the surface and the group are defined over a number …

Automorphisms of surfaces: Kummer rigidity and measure of maximal entropy

S Cantat, C Dupont - Journal of the European Mathematical Society, 2020 - ems.press
We classify complex projective surfaces X with an automorphism f of positive entropy for
which the unique measure of maximal entropy is absolutely continuous with respect to the …

On the complex dynamics of birational surface maps defined over number fields

M Jonsson, P Reschke - Journal für die reine und angewandte …, 2018 - degruyter.com
We show that any birational selfmap of a complex projective surface that has dynamical
degree greater than one and is defined over a number field automatically satisfies the …