Machine culture

L Brinkmann, F Baumann, JF Bonnefon… - Nature Human …, 2023 - nature.com
The ability of humans to create and disseminate culture is often credited as the single most
important factor of our success as a species. In this Perspective, we explore the notion of …

Inductive biases for deep learning of higher-level cognition

A Goyal, Y Bengio - Proceedings of the Royal Society A, 2022 - royalsocietypublishing.org
A fascinating hypothesis is that human and animal intelligence could be explained by a few
principles (rather than an encyclopaedic list of heuristics). If that hypothesis was correct, we …

Multi-agent deep reinforcement learning: a survey

S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …

Emergent tool use from multi-agent autocurricula

B Baker, I Kanitscheider, T Markov, Y Wu… - arXiv preprint arXiv …, 2019 - arxiv.org
Through multi-agent competition, the simple objective of hide-and-seek, and standard
reinforcement learning algorithms at scale, we find that agents create a self-supervised …

A survey and critique of multiagent deep reinforcement learning

P Hernandez-Leal, B Kartal, ME Taylor - Autonomous Agents and Multi …, 2019 - Springer
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have …

Open problems in cooperative ai

A Dafoe, E Hughes, Y Bachrach, T Collins… - arXiv preprint arXiv …, 2020 - arxiv.org
Problems of cooperation--in which agents seek ways to jointly improve their welfare--are
ubiquitous and important. They can be found at scales ranging from our daily routines--such …

Emergent complexity and zero-shot transfer via unsupervised environment design

M Dennis, N Jaques, E Vinitsky… - Advances in neural …, 2020 - proceedings.neurips.cc
A wide range of reinforcement learning (RL) problems---including robustness, transfer
learning, unsupervised RL, and emergent complexity---require specifying a distribution of …

Direct fit to nature: an evolutionary perspective on biological and artificial neural networks

U Hasson, SA Nastase, A Goldstein - Neuron, 2020 - cell.com
Evolution is a blind fitting process by which organisms become adapted to their
environment. Does the brain use similar brute-force fitting processes to learn how to …

From motor control to team play in simulated humanoid football

S Liu, G Lever, Z Wang, J Merel, SMA Eslami… - Science Robotics, 2022 - science.org
Learning to combine control at the level of joint torques with longer-term goal-directed
behavior is a long-standing challenge for physically embodied artificial agents. Intelligent …

Scalable evaluation of multi-agent reinforcement learning with melting pot

JZ Leibo, EA Dueñez-Guzman… - International …, 2021 - proceedings.mlr.press
Existing evaluation suites for multi-agent reinforcement learning (MARL) do not assess
generalization to novel situations as their primary objective (unlike supervised learning …