R Van Peski - Proceedings of the London Mathematical …, 2024 - Wiley Online Library
We study the distribution of singular numbers of products of certain classes of pp‐adic random matrices, as both the matrix size and number of products go to∞ ∞ simultaneously …
A Mészáros - arXiv preprint arXiv:2408.13037, 2024 - arxiv.org
arXiv:2408.13037v1 [math.PR] 23 Aug 2024 A phase transition for the cokernels of random band matrices over the p-adic integers Page 1 arXiv:2408.13037v1 [math.PR] 23 Aug 2024 A …
A Mészáros - arXiv preprint arXiv:2307.04741, 2023 - arxiv.org
Let us consider the following matrix $ B_n $. The columns of $ B_n $ are indexed with $[n]=\{1, 2,\dots, n\} $ and the rows are indexed with $[n]^ 3$. The row corresponding to …
In this paper, we study the joint distribution of the cokernels of random p-adic matrices. Let p be a prime and let P 1(t),…, P l(t)∈ ℤ p[t] be monic polynomials whose reductions …
R Van Peski - arXiv preprint arXiv:2312.11702, 2023 - arxiv.org
We prove dynamical local limits for the singular numbers of $ p $-adic random matrix products at both the bulk and edge. The limit object which we construct, the reflecting …
R Van Peski - arXiv preprint arXiv:2309.02865, 2023 - arxiv.org
We consider the singular numbers of a certain explicit continuous-time Markov jump process on $\mathrm {GL} _N (\mathbb {Q} _p) $, which we argue gives the closest $ p $-adic …
G Cheong, Y Liang, M Strand - Linear Algebra and its Applications, 2023 - Elsevier
Given a prime p and a positive integer k, let M n (Z/pk Z) be the ring of n× n matrices over Z/pk Z. We consider the number of solutions X∈ M n (Z/pk Z) to the polynomial equation P …
We study the joint distribution of random abelian and non-abelian groups. In the abelian case, we prove several universality results for the joint distribution of the multiple cokernels …
R Van Peski - arXiv preprint arXiv:2402.16625, 2024 - arxiv.org
arXiv:2402.16625v1 [math.CO] 26 Feb 2024 Page 1 arXiv:2402.16625v1 [math.CO] 26 Feb 2024 SYMMETRIC FUNCTIONS AND THE EXPLICIT MOMENT PROBLEM FOR ABELIAN …