Communication-efficient distributed learning: An overview

X Cao, T Başar, S Diggavi, YC Eldar… - IEEE journal on …, 2023 - ieeexplore.ieee.org
Distributed learning is envisioned as the bedrock of next-generation intelligent networks,
where intelligent agents, such as mobile devices, robots, and sensors, exchange information …

Advances in asynchronous parallel and distributed optimization

M Assran, A Aytekin, HR Feyzmahdavian… - Proceedings of the …, 2020 - ieeexplore.ieee.org
Motivated by large-scale optimization problems arising in the context of machine learning,
there have been several advances in the study of asynchronous parallel and distributed …

Tackling the objective inconsistency problem in heterogeneous federated optimization

J Wang, Q Liu, H Liang, G Joshi… - Advances in neural …, 2020 - proceedings.neurips.cc
In federated learning, heterogeneity in the clients' local datasets and computation speeds
results in large variations in the number of local updates performed by each client in each …

Generalized federated learning via sharpness aware minimization

Z Qu, X Li, R Duan, Y Liu, B Tang… - … conference on machine …, 2022 - proceedings.mlr.press
Federated Learning (FL) is a promising framework for performing privacy-preserving,
distributed learning with a set of clients. However, the data distribution among clients often …

Pytorch distributed: Experiences on accelerating data parallel training

S Li, Y Zhao, R Varma, O Salpekar, P Noordhuis… - arXiv preprint arXiv …, 2020 - arxiv.org
This paper presents the design, implementation, and evaluation of the PyTorch distributed
data parallel module. PyTorch is a widely-adopted scientific computing package used in …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Tighter theory for local SGD on identical and heterogeneous data

A Khaled, K Mishchenko… - … Conference on Artificial …, 2020 - proceedings.mlr.press
We provide a new analysis of local SGD, removing unnecessary assumptions and
elaborating on the difference between two data regimes: identical and heterogeneous. In …

Accelerating federated learning via momentum gradient descent

W Liu, L Chen, Y Chen, W Zhang - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Federated learning (FL) provides a communication-efficient approach to solve machine
learning problems concerning distributed data, without sending raw data to a central server …

Communication-efficient adaptive federated learning

Y Wang, L Lin, J Chen - International Conference on …, 2022 - proceedings.mlr.press
Federated learning is a machine learning training paradigm that enables clients to jointly
train models without sharing their own localized data. However, the implementation of …

Mime: Mimicking centralized stochastic algorithms in federated learning

SP Karimireddy, M Jaggi, S Kale, M Mohri… - arXiv preprint arXiv …, 2020 - arxiv.org
Federated learning (FL) is a challenging setting for optimization due to the heterogeneity of
the data across different clients which gives rise to the client drift phenomenon. In fact …