An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review

S Das, GK Nayak, L Saba, M Kalra, JS Suri… - Computers in biology and …, 2022 - Elsevier
Background Artificial intelligence (AI) has become a prominent technique for medical
diagnosis and represents an essential role in detecting brain tumors. Although AI-based …

Brain tumor characterization using radiogenomics in artificial intelligence framework

B Jena, S Saxena, GK Nayak, A Balestrieri, N Gupta… - Cancers, 2022 - mdpi.com
Simple Summary Radiogenomics is a relatively new advancement in the understanding of
the biology and behaviour of cancer in response to conventional treatments. One of the most …

Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A …

M Agarwal, S Agarwal, L Saba, GL Chabert… - Computers in biology …, 2022 - Elsevier
Abstract Background COVLIAS 1.0: an automated lung segmentation was designed for
COVID-19 diagnosis. It has issues related to storage space and speed. This study shows …

Long-COVID diagnosis: From diagnostic to advanced AI-driven models

R Cau, G Faa, V Nardi, A Balestrieri, J Puig… - European journal of …, 2022 - Elsevier
SARS-COV 2 is recognized to be responsible for a multi-organ syndrome. In most patients,
symptoms are mild. However, in certain subjects, COVID-19 tends to progress more …

[HTML][HTML] Ensemble deep learning derived from transfer learning for classification of COVID-19 patients on hybrid deep-learning-based lung segmentation: a data …

AK Dubey, GL Chabert, A Carriero, A Pasche… - Diagnostics, 2023 - mdpi.com
Background and motivation: Lung computed tomography (CT) techniques are high-
resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease …

A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework

SS Skandha, A Nicolaides, SK Gupta… - Computers in biology …, 2022 - Elsevier
Background Early and automated detection of carotid plaques prevents strokes, which are
the second leading cause of death worldwide according to the World Health Organization …

Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: a neuro-oncological investigation

S Saxena, B Jena, B Mohapatra, N Gupta… - Computers in Biology …, 2023 - Elsevier
Abstract Background The O6-methylguanine-DNA methyltransferase (MGMT) is a
deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential …

Attention-based UNet deep learning model for plaque segmentation in carotid ultrasound for stroke risk stratification: an artificial intelligence paradigm

PK Jain, A Dubey, L Saba, NN Khanna… - Journal of …, 2022 - mdpi.com
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The
early detection of such events may prevent the burden of death and costly surgery …

Cardiovascular/stroke risk stratification in Parkinson's disease patients using atherosclerosis pathway and artificial intelligence paradigm: a systematic review

JS Suri, S Paul, MA Maindarkar, A Puvvula, S Saxena… - Metabolites, 2022 - mdpi.com
Parkinson's disease (PD) is a severe, incurable, and costly condition leading to heart failure.
The link between PD and cardiovascular disease (CVD) is not available, leading to …

COVLIAS 2.0-cXAI: Cloud-based explainable deep learning system for COVID-19 lesion localization in computed tomography scans

JS Suri, S Agarwal, GL Chabert, A Carriero, A Paschè… - Diagnostics, 2022 - mdpi.com
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation
and the role of explainable artificial intelligence (AI) for understanding lesion localization …