Graph neural networks for molecules

Y Wang, Z Li, A Barati Farimani - Machine Learning in Molecular Sciences, 2023 - Springer
Graph neural networks (GNNs), which are capable of learning representations from
graphical data, are naturally suitable for modeling molecular systems. This review …

Neural message passing for joint paratope-epitope prediction

A Del Vecchio, A Deac, P Liò, P Veličković - arXiv preprint arXiv …, 2021 - arxiv.org
Antibodies are proteins in the immune system which bind to antigens to detect and
neutralise them. The binding sites in an antibody-antigen interaction are known as the …

Protein function prediction with gene ontology: from traditional to deep learning models

TTD Vu, J Jung - PeerJ, 2021 - peerj.com
Protein function prediction is a crucial part of genome annotation. Prediction methods have
recently witnessed rapid development, owing to the emergence of high-throughput …

Deep learning for protein–protein interaction site prediction

AR Jamasb, B Day, C Cangea, P Liò… - Proteomics data …, 2021 - Springer
Protein–protein interactions (PPIs) are central to cellular functions. Experimental methods for
predicting PPIs are well developed but are time and resource expensive and suffer from …

An effective GCN-based hierarchical multi-label classification for protein function prediction

K Choi, Y Lee, C Kim, M Yoon - arXiv preprint arXiv:2112.02810, 2021 - arxiv.org
We propose an effective method to improve Protein Function Prediction (PFP) utilizing
hierarchical features of Gene Ontology (GO) terms. Our method consists of a language …

Предсказание функций белков при помощи базы данных «Gene Ontology» и моделей машинного обучения

А Исмаилова, А Жумаханова - Известия НАН РК …, 2022 - journals.nauka-nanrk.kz
Аннотация Прогнозирование функций белков является важной частью аннотации
генома. В последнее время методы прогнозирования быстро развиваются благодаря …