Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models

Y Liu, D Yang, Y Wang, J Liu, J Liu… - ACM Computing …, 2024 - dl.acm.org
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance
systems, enabling the temporal or spatial identification of anomalous events within videos …

Cutpaste: Self-supervised learning for anomaly detection and localization

CL Li, K Sohn, J Yoon, T Pfister - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We aim at constructing a high performance model for defect detection that detects unknown
anomalous patterns of an image without anomalous data. To this end, we propose a two …

Self-supervised predictive convolutional attentive block for anomaly detection

NC Ristea, N Madan, RT Ionescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …

Anomaly detection in video via self-supervised and multi-task learning

MI Georgescu, A Barbalau… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection in video is a challenging computer vision problem. Due to the lack of
anomalous events at training time, anomaly detection requires the design of learning …

Destseg: Segmentation guided denoising student-teacher for anomaly detection

X Zhang, S Li, X Li, P Huang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Visual anomaly detection, an important problem in computer vision, is usually formulated as
a one-class classification and segmentation task. The student-teacher (ST) framework has …

Ubnormal: New benchmark for supervised open-set video anomaly detection

A Acsintoae, A Florescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Detecting abnormal events in video is commonly framed as a one-class classification task,
where training videos contain only normal events, while test videos encompass both normal …

Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection

JX Zhong, N Li, W Kong, S Liu… - Proceedings of the …, 2019 - openaccess.thecvf.com
Video anomaly detection under weak labels is formulated as a typical multiple-instance
learning problem in previous works. In this paper, we provide a new perspective, ie, a …

Omni-frequency channel-selection representations for unsupervised anomaly detection

Y Liang, J Zhang, S Zhao, R Wu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Density-based and classification-based methods have ruled unsupervised anomaly
detection in recent years, while reconstruction-based methods are rarely mentioned for the …

Feature prediction diffusion model for video anomaly detection

C Yan, S Zhang, Y Liu, G Pang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Anomaly detection in the video is an important research area and a challenging task in real
applications. Due to the unavailability of large-scale annotated anomaly events, most …