Printability and shape fidelity of bioinks in 3D bioprinting

A Schwab, R Levato, M D'Este, S Piluso, D Eglin… - Chemical …, 2020 - ACS Publications
Three-dimensional bioprinting uses additive manufacturing techniques for the automated
fabrication of hierarchically organized living constructs. The building blocks are often …

Microfluidic formulation of topological hydrogels for microtissue engineering

KO Rojek, M Cwiklinska, J Kuczak… - Chemical …, 2022 - ACS Publications
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized
cell aggregates capable of performing tissue-specific functions, so-called microtissues, for …

Hydrogel microparticles for biomedical applications

AC Daly, L Riley, T Segura, JA Burdick - Nature Reviews Materials, 2020 - nature.com
Hydrogel microparticles (HMPs) are promising for biomedical applications, ranging from the
therapeutic delivery of cells and drugs to the production of scaffolds for tissue repair and …

Progress in 3D bioprinting technology for tissue/organ regenerative engineering

I Matai, G Kaur, A Seyedsalehi, A McClinton… - Biomaterials, 2020 - Elsevier
Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of
the need for alternatives to allograft tissues. Within the last three decades, research efforts in …

A review on cell damage, viability, and functionality during 3D bioprinting

HQ Xu, JC Liu, ZY Zhang, CX Xu - Military Medical Research, 2022 - Springer
Abstract Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by
accurately depositing the bioink composed of the biological materials and living cells. Even …

Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies

D Chimene, R Kaunas, AK Gaharwar - Advanced materials, 2020 - Wiley Online Library
Bioprinting is an emerging approach for fabricating cell‐laden 3D scaffolds via robotic
deposition of cells and biomaterials into custom shapes and patterns to replicate complex …

Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives

JM Unagolla, AC Jayasuriya - Applied materials today, 2020 - Elsevier
Hydrogel plays a vital role in cell-laden three dimensional (3D) bioprinting, whereas those
hydrogels mimic the physical and biochemical characteristics of native extracellular matrix …

Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications

C Yu, J Schimelman, P Wang, KL Miller, X Ma… - Chemical …, 2020 - ACS Publications
Since the advent of additive manufacturing, known commonly as 3D printing, this technology
has revolutionized the biofabrication landscape and driven numerous pivotal advancements …

From shape to function: the next step in bioprinting

R Levato, T Jungst, RG Scheuring, T Blunk… - Advanced …, 2020 - Wiley Online Library
Abstract In 2013, the “biofabrication window” was introduced to reflect the processing
challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable …

Strategies for 3D bioprinting of spheroids: A comprehensive review

D Banerjee, YP Singh, P Datta, V Ozbolat, A O'Donnell… - Biomaterials, 2022 - Elsevier
Biofabricated tissues have found numerous applications in tissue engineering and
regenerative medicine in addition to the promotion of disease modeling and drug …