A Survey of Non‐Rigid 3D Registration

B Deng, Y Yao, RM Dyke, J Zhang - Computer Graphics Forum, 2022 - Wiley Online Library
Non‐rigid registration computes an alignment between a source surface with a target
surface in a non‐rigid manner. In the past decade, with the advances in 3D sensing …

Recent advances in shape correspondence

Y Sahillioğlu - The Visual Computer, 2020 - Springer
Important new developments have appeared since the most recent direct survey on shape
correspondence published almost a decade ago. Our survey covers the period from 2011 …

Image matching from handcrafted to deep features: A survey

J Ma, X Jiang, A Fan, J Jiang, J Yan - International Journal of Computer …, 2021 - Springer
As a fundamental and critical task in various visual applications, image matching can identify
then correspond the same or similar structure/content from two or more images. Over the …

Lepard: Learning partial point cloud matching in rigid and deformable scenes

Y Li, T Harada - Proceedings of the IEEE/CVF conference …, 2022 - openaccess.thecvf.com
Abstract We present Lepard, a Learning based approach for partial point cloud matching in
rigid and deformable scenes. The key characteristics are the following techniques that …

Taskonomy: Disentangling task transfer learning

AR Zamir, A Sax, W Shen, LJ Guibas… - Proceedings of the …, 2018 - openaccess.thecvf.com
Do visual tasks have a relationship, or are they unrelated? For instance, could having
surface normals simplify estimating the depth of an image? Intuition answers these …

Prnet: Self-supervised learning for partial-to-partial registration

Y Wang, JM Solomon - Advances in neural information …, 2019 - proceedings.neurips.cc
We present a simple, flexible, and general framework titled Partial Registration Network
(PRNet), for partial-to-partial point cloud registration. Inspired by recently-proposed learning …

Dynamic graph cnn for learning on point clouds

Y Wang, Y Sun, Z Liu, SE Sarma… - ACM Transactions on …, 2019 - dl.acm.org
Point clouds provide a flexible geometric representation suitable for countless applications
in computer graphics; they also comprise the raw output of most 3D data acquisition devices …

Diffusionnet: Discretization agnostic learning on surfaces

N Sharp, S Attaiki, K Crane, M Ovsjanikov - ACM Transactions on …, 2022 - dl.acm.org
We introduce a new general-purpose approach to deep learning on three-dimensional
surfaces based on the insight that a simple diffusion layer is highly effective for spatial …

Geometric deep learning: going beyond euclidean data

MM Bronstein, J Bruna, Y LeCun… - IEEE Signal …, 2017 - ieeexplore.ieee.org
Geometric deep learning is an umbrella term for emerging techniques attempting to
generalize (structured) deep neural models to non-Euclidean domains, such as graphs and …

Deep graph matching consensus

M Fey, JE Lenssen, C Morris, J Masci… - arXiv preprint arXiv …, 2020 - arxiv.org
This work presents a two-stage neural architecture for learning and refining structural
correspondences between graphs. First, we use localized node embeddings computed by a …