Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Time-series forecasting with deep learning: a survey

B Lim, S Zohren - … Transactions of the Royal Society A, 2021 - royalsocietypublishing.org
Numerous deep learning architectures have been developed to accommodate the diversity
of time-series datasets across different domains. In this article, we survey common encoder …

Csdi: Conditional score-based diffusion models for probabilistic time series imputation

Y Tashiro, J Song, Y Song… - Advances in Neural …, 2021 - proceedings.neurips.cc
The imputation of missing values in time series has many applications in healthcare and
finance. While autoregressive models are natural candidates for time series imputation …

Lag-llama: Towards foundation models for time series forecasting

K Rasul, A Ashok, AR Williams… - … -FoMo: Robustness of …, 2023 - openreview.net
Aiming to build foundation models for time-series forecasting and study their scaling
behavior, we present here our work-in-progress on Lag-Llama, a general-purpose …

[HTML][HTML] Forecasting: theory and practice

F Petropoulos, D Apiletti, V Assimakopoulos… - International Journal of …, 2022 - Elsevier
Forecasting has always been at the forefront of decision making and planning. The
uncertainty that surrounds the future is both exciting and challenging, with individuals and …

Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …

[HTML][HTML] A review of green artificial intelligence: Towards a more sustainable future

V Bolón-Canedo, L Morán-Fernández, B Cancela… - Neurocomputing, 2024 - Elsevier
Green artificial intelligence (AI) is more environmentally friendly and inclusive than
conventional AI, as it not only produces accurate results without increasing the …

Generative time series forecasting with diffusion, denoise, and disentanglement

Y Li, X Lu, Y Wang, D Dou - Advances in Neural …, 2022 - proceedings.neurips.cc
Time series forecasting has been a widely explored task of great importance in many
applications. However, it is common that real-world time series data are recorded in a short …

Deep learning on traffic prediction: Methods, analysis, and future directions

X Yin, G Wu, J Wei, Y Shen, H Qi… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic
prediction can assist route planing, guide vehicle dispatching, and mitigate traffic …

Probabilistic transformer for time series analysis

B Tang, DS Matteson - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Generative modeling of multivariate time series has remained challenging partly due to the
complex, non-deterministic dynamics across long-distance timesteps. In this paper, we …