A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

A comprehensive survey on graph anomaly detection with deep learning

X Ma, J Wu, S Xue, J Yang, C Zhou… - … on Knowledge and …, 2021 - ieeexplore.ieee.org
Anomalies are rare observations (eg, data records or events) that deviate significantly from
the others in the sample. Over the past few decades, research on anomaly mining has …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Explainable artificial intelligence applications in cyber security: State-of-the-art in research

Z Zhang, H Al Hamadi, E Damiani, CY Yeun… - IEEE …, 2022 - ieeexplore.ieee.org
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …

Enhancing graph neural network-based fraud detectors against camouflaged fraudsters

Y Dou, Z Liu, L Sun, Y Deng, H Peng… - Proceedings of the 29th …, 2020 - dl.acm.org
Graph Neural Networks (GNNs) have been widely applied to fraud detection problems in
recent years, revealing the suspiciousness of nodes by aggregating their neighborhood …

Pick and choose: a GNN-based imbalanced learning approach for fraud detection

Y Liu, X Ao, Z Qin, J Chi, J Feng, H Yang… - Proceedings of the web …, 2021 - dl.acm.org
Graph-based fraud detection approaches have escalated lots of attention recently due to the
abundant relational information of graph-structured data, which may be beneficial for the …

Anomaly detection on attributed networks via contrastive self-supervised learning

Y Liu, Z Li, S Pan, C Gong, C Zhou… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection on attributed networks attracts considerable research interests due to
wide applications of attributed networks in modeling a wide range of complex systems …

A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

Heterogeneous graph neural network

C Zhang, D Song, C Huang, A Swami… - Proceedings of the 25th …, 2019 - dl.acm.org
Representation learning in heterogeneous graphs aims to pursue a meaningful vector
representation for each node so as to facilitate downstream applications such as link …

Intelligent financial fraud detection practices in post-pandemic era

X Zhu, X Ao, Z Qin, Y Chang, Y Liu, Q He, J Li - The Innovation, 2021 - cell.com
The great losses caused by financial fraud have attracted continuous attention from
academia, industry, and regulatory agencies. More concerning, the ongoing coronavirus …