Fairness under demographic scarce regime

PJ Kenfack, SE Kahou, U Aïvodji - arXiv preprint arXiv:2307.13081, 2023 - arxiv.org
Most existing works on fairness assume the model has full access to demographic
information. However, there exist scenarios where demographic information is partially …

Repfair-gan: Mitigating representation bias in gans using gradient clipping

PJ Kenfack, K Sabbagh, AR Rivera, A Khan - arXiv preprint arXiv …, 2022 - arxiv.org
Fairness has become an essential problem in many domains of Machine Learning (ML),
such as classification, natural language processing, and Generative Adversarial Networks …

Learning fair representations through uniformly distributed sensitive attributes

PJ Kenfack, AR Rivera, AM Khan… - 2023 IEEE Conference …, 2023 - ieeexplore.ieee.org
Machine Learning (ML) models trained on biased data can reproduce and even amplify
these biases. Since such models are deployed to make decisions that can affect people's …

Benign Autoencoders

S Malamud, TA Xu, A Didisheim - arXiv preprint arXiv:2210.00637, 2022 - arxiv.org
Recent progress in Generative Artificial Intelligence (AI) relies on efficient data
representations, often featuring encoder-decoder architectures. We formalize the …

[PDF][PDF] UMA ABORDAGEM NÃO SUPERVISIONADA PARA RECONSTRUÇÃO JUSTA DE DADOS

FB de Melo - 2023 - cos.ufrj.br
1.1 Motivação Nos últimos anos, temos testemunhado um aumento significativo na adoção
de sistemas inteligentes, os quais empregam modelos preditivos que processam grandes …