Imbalance problems in object detection: A review

K Oksuz, BC Cam, S Kalkan… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
In this paper, we present a comprehensive review of the imbalance problems in object
detection. To analyze the problems in a systematic manner, we introduce a problem-based …

When and why vision-language models behave like bags-of-words, and what to do about it?

M Yuksekgonul, F Bianchi, P Kalluri, D Jurafsky… - arXiv preprint arXiv …, 2022 - arxiv.org
Despite the success of large vision and language models (VLMs) in many downstream
applications, it is unclear how well they encode compositional information. Here, we create …

Hard negative mixing for contrastive learning

Y Kalantidis, MB Sariyildiz, N Pion… - Advances in neural …, 2020 - proceedings.neurips.cc
Contrastive learning has become a key component of self-supervised learning approaches
for computer vision. By learning to embed two augmented versions of the same image close …

Bootstrap your own latent-a new approach to self-supervised learning

JB Grill, F Strub, F Altché, C Tallec… - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-
supervised image representation learning. BYOL relies on two neural networks, referred to …

Verbs in action: Improving verb understanding in video-language models

L Momeni, M Caron, A Nagrani… - Proceedings of the …, 2023 - openaccess.thecvf.com
Understanding verbs is crucial to modelling how people and objects interact with each other
and the environment through space and time. Recently, state-of-the-art video-language …

A metric learning reality check

K Musgrave, S Belongie, SN Lim - … , Glasgow, UK, August 23–28, 2020 …, 2020 - Springer
Deep metric learning papers from the past four years have consistently claimed great
advances in accuracy, often more than doubling the performance of decade-old methods. In …

Multi-similarity loss with general pair weighting for deep metric learning

X Wang, X Han, W Huang, D Dong… - Proceedings of the …, 2019 - openaccess.thecvf.com
A family of loss functions built on pair-based computation have been proposed in the
literature which provide a myriad of solutions for deep metric learning. In this pa-per, we …

Proxy anchor loss for deep metric learning

S Kim, D Kim, M Cho, S Kwak - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Existing metric learning losses can be categorized into two classes: pair-based and proxy-
based losses. The former class can leverage fine-grained semantic relations between data …

Meta-transfer learning for few-shot learning

Q Sun, Y Liu, TS Chua… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
Meta-learning has been proposed as a framework to address the challenging few-shot
learning setting. The key idea is to leverage a large number of similar few-shot tasks in order …

Unsupervised embedding learning via invariant and spreading instance feature

M Ye, X Zhang, PC Yuen… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
This paper studies the unsupervised embedding learning problem, which requires an
effective similarity measurement between samples in low-dimensional embedding space …