End-to-end constrained optimization learning: A survey

J Kotary, F Fioretto, P Van Hentenryck… - arXiv preprint arXiv …, 2021 - arxiv.org
This paper surveys the recent attempts at leveraging machine learning to solve constrained
optimization problems. It focuses on surveying the work on integrating combinatorial solvers …

A review on learning to solve combinatorial optimisation problems in manufacturing

C Zhang, Y Wu, Y Ma, W Song, Z Le… - IET Collaborative …, 2023 - Wiley Online Library
An efficient manufacturing system is key to maintaining a healthy economy today. With the
rapid development of science and technology and the progress of human society, the …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Solving mixed integer programs using neural networks

V Nair, S Bartunov, F Gimeno, I Von Glehn… - arXiv preprint arXiv …, 2020 - arxiv.org
Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics
developed with decades of research to solve large-scale MIP instances encountered in …

Let the flows tell: Solving graph combinatorial problems with gflownets

D Zhang, H Dai, N Malkin… - Advances in neural …, 2023 - proceedings.neurips.cc
Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact
algorithms, making them a tempting domain to apply machine learning methods. The highly …

Network planning with deep reinforcement learning

H Zhu, V Gupta, SS Ahuja, Y Tian, Y Zhang… - Proceedings of the 2021 …, 2021 - dl.acm.org
Network planning is critical to the performance, reliability and cost of web services. This
problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's …

A survey for solving mixed integer programming via machine learning

J Zhang, C Liu, X Li, HL Zhen, M Yuan, Y Li, J Yan - Neurocomputing, 2023 - Elsevier
Abstract Machine learning (ML) has been recently introduced to solving optimization
problems, especially for combinatorial optimization (CO) tasks. In this paper, we survey the …

Learning to branch with tree mdps

L Scavuzzo, F Chen, D Chételat… - Advances in neural …, 2022 - proceedings.neurips.cc
State-of-the-art Mixed Integer Linear Programming (MILP) solvers combine systematic tree
search with a plethora of hard-coded heuristics, such as branching rules. While approaches …

Learning to compare nodes in branch and bound with graph neural networks

AG Labassi, D Chételat, A Lodi - Advances in neural …, 2022 - proceedings.neurips.cc
Branch-and-bound approaches in integer programming require ordering portions of the
space to explore next, a problem known as node comparison. We propose a new siamese …

Exploring the power of graph neural networks in solving linear optimization problems

C Qian, D Chételat, C Morris - International Conference on …, 2024 - proceedings.mlr.press
Recently, machine learning, particularly message-passing graph neural networks (MPNNs),
has gained traction in enhancing exact optimization algorithms. For example, MPNNs speed …