Small moving rigid body into a viscous incompressible fluid

C Lacave, T Takahashi - Archive for Rational Mechanics and Analysis, 2017 - Springer
We consider a single disk moving under the influence of a two dimensional viscous fluid and
we study the asymptotic as the size of the solid tends to zero. If the density of the solid is …

On the small rigid body limit in 3D incompressible flows

J He, D Iftimie - Journal of the London Mathematical Society, 2021 - Wiley Online Library
We consider the evolution of a small rigid body in an incompressible viscous fluid filling the
whole space R 3. The motion of the fluid is modeled by the Navier–Stokes equations …

The vanishing viscosity limit in the presence of a porous medium

C Lacave, AL Mazzucato - Mathematische Annalen, 2016 - Springer
We consider the flow of a viscous, incompressible, Newtonian fluid in a perforated domain in
the plane. The domain is the exterior of a regular lattice of rigid particles. We study the …

Limits of the Stokes and Navier–Stokes equations in a punctured periodic domain

M Chipot, J Droniou, G Planas… - Analysis and …, 2020 - World Scientific
We treat three problems on a two-dimensional “punctured periodic domain”: we take Ω r=(−
L, L) 2\r K, where r> 0 and K is the closure of an open connected set that is star-shaped with …

The vanishing limit of a rigid body in three-dimensional viscous incompressible fluid

J He, P Su - Mathematische Annalen, 2024 - Springer
We consider the evolution of a small rigid body in an incompressible viscous fluid filling the
whole space\({{\mathbb {R}}}^ 3\). When the small rigid body shrinks to a “massless” point in …

Two dimensional incompressible ideal flow around a small curve

C Lacave - Communications in Partial Differential Equations, 2012 - Taylor & Francis
We study the asymptotic behavior of solutions of the two dimensional incompressible Euler
equations in the exterior of a curve when the curve shrinks to a point. This work links the two …

Limits of the Stokes and Navier-Stokes equations in a punctured periodic domain

M Chipot, J Droniou, G Planas, JC Robinson… - arXiv preprint arXiv …, 2014 - arxiv.org
In this paper we treat three problems on a two-dimensionalpunctured periodic domain': we
take $\Omega_r=(-L, L)^ 2\setminus D_r $, where $ D_r= B (0, r) $ is the disc of radius $ r …

Asymptotic limit for the stokes and navier-stokes problems in a planar domain with a vanishing hole

A Munnier - arXiv preprint arXiv:2011.10816, 2020 - arxiv.org
We show that the eigenvalues of the Stokes operator in a domain with a small hole converge
to the eigenvalues of the Stokes operator in the whole domain, when the diameter of the …

Comportement d'un fluide autour d'un petit obstacle, problèmes de convections et dynamique chaotique des films liquides

J He - 2019 - theses.hal.science
Cette thèse est consacrée à trois différentes équations d'évolution non-linéaires dans le
cadre de mécanique des fluides: le système fluide-solide, le système de Boussinesq et un …

Stabilité des fluides incompressibles

C Lacave - 2017 - hal.science
Nous rassemblons dans ce mémoire les résultats obtenus par l'auteur et ses collaborateurs,
puis nous donnerons les idées principales de l'analyse mise en place pour leurs …