Parallel hierarchical matrices with adaptive cross approximation on symmetric multiprocessing clusters

A Ida, T Iwashita, T Mifune… - Journal of information …, 2014 - jstage.jst.go.jp
We discuss a scheme for hierarchical matrices with adaptive cross approximation on
symmetric multiprocessing clusters. We propose a set of parallel algorithms that are …

[PDF][PDF] Accelerating the LOBPCG method on GPUs using a blocked sparse matrix vector product.

H Anzt, S Tomov, JJ Dongarra - SpringSim (HPS), 2015 - researchgate.net
This paper presents a heterogeneous CPU-GPU implementation for a sparse iterative
eigensolver–the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG). For …

On the performance and energy efficiency of sparse linear algebra on GPUs

H Anzt, S Tomov, J Dongarra - The International Journal of …, 2017 - journals.sagepub.com
In this paper we unveil some performance and energy efficiency frontiers for sparse
computations on GPU-based supercomputers. We compare the resource efficiency of …

A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains

L Theisen, B Stamm - SIAM Journal on Scientific Computing, 2024 - SIAM
Accelerating iterative eigenvalue algorithms is often achieved by employing a spectral
shifting strategy. Unfortunately, improved shifting typically leads to a smaller eigenvalue for …

Generalizable Spectral Embedding with an Application to UMAP

N Ben-Ari, A Yacobi, U Shaham - arXiv preprint arXiv:2501.11305, 2025 - arxiv.org
Spectral Embedding (SE) is a popular method for dimensionality reduction, applicable
across diverse domains. Nevertheless, its current implementations face three prominent …

Energy efficiency and performance frontiers for sparse computations on GPU supercomputers

H Anzt, S Tomov, J Dongarra - … of the sixth international workshop on …, 2015 - dl.acm.org
In this paper we unveil some energy efficiency and performance frontiers for sparse
computations on GPU-based supercomputers. To do this, we consider state-of-the-art …

Extrapolating the Arnoldi algorithm to improve eigenvector convergence

S Pollock, LR Scott - arXiv preprint arXiv:2103.08635, 2021 - arxiv.org
We consider extrapolation of the Arnoldi algorithm to accelerate computation of the
dominant eigenvalue/eigenvector pair. The basic algorithm uses sequences of Krylov …

Scalable domain decomposition eigensolvers for Schrödinger operators in anisotropic structures

L Theisen, P Henning, B Stamm, A Reusken - 2024 - publications.rwth-aachen.de
Kurzfassung Diese Arbeit behandelt die Konstruktion und Analyse von skalierbaren
Vorkonditionierungsstrategien für das lineare Schrödinger-Eigenwertproblem mit …

[PDF][PDF] Using small eigenproblems to accelerate power method iterations

S Pollock, LR Scott - 2021 - newtraell.cs.uchicago.edu
We consider algorithms that operate on sequences of Krylov vectors generated by the
(inverse) power method that accelerate computation of the dominant eigenvalue. The …

[HTML][HTML] Analysis of parallelization strategies in the context of hierarchical matrix factorizations

RC Sáez - 2021 - dialnet.unirioja.es
Resumen (English summary below) Las H-Matrices nacen como una potente herramienta
numérica para abordar aplicaciones cuyos datos generan estructuras que se sitúan entre …