Valuation of surface coatings in high-energy density lithium-ion battery cathode materials

U Nisar, N Muralidharan, R Essehli, R Amin… - Energy Storage …, 2021 - Elsevier
Artificial barriers, usually with either electrochemically active or inactive coating materials,
are deployed on cathode material surfaces to mitigate detrimental side reactions by …

Commercialization of lithium battery technologies for electric vehicles

X Zeng, M Li, D Abd El‐Hady, W Alshitari… - Advanced Energy …, 2019 - Wiley Online Library
The currently commercialized lithium‐ion batteries have allowed for the creation of practical
electric vehicles, simultaneously satisfying many stringent milestones in energy density …

Ni‐rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges

X Wang, YL Ding, YP Deng… - Advanced Energy …, 2020 - Wiley Online Library
To pursue a higher energy density (> 300 Wh kg− 1 at the cell level) and a lower cost (<
$125 kWh− 1 expected at 2022) of Li‐ion batteries for making electric vehicles (EVs) long …

Emerging atomic layer deposition for the development of high-performance lithium-ion batteries

S Karimzadeh, B Safaei, C Yuan, TC Jen - Electrochemical Energy …, 2023 - Springer
With the increasing demand for low-cost and environmentally friendly energy, the
application of rechargeable lithium-ion batteries (LIBs) as reliable energy storage devices in …

Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries

T Li, XZ Yuan, L Zhang, D Song, K Shi… - Electrochemical Energy …, 2020 - Springer
The demand for lithium-ion batteries (LIBs) with high mass-specific capacities, high rate
capabilities and long-term cyclabilities is driving the research and development of LIBs with …

Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes

GL Xu, Q Liu, KKS Lau, Y Liu, X Liu, H Gao, X Zhou… - Nature Energy, 2019 - nature.com
Despite their relatively high capacity, layered lithium transition metal oxides suffer from
crystal and interfacial structural instability under aggressive electrochemical and thermal …

A review on the stability and surface modification of layered transition-metal oxide cathodes

JM Kim, X Zhang, JG Zhang, A Manthiram, YS Meng… - Materials Today, 2021 - Elsevier
An ever-increasing market for electric vehicles (EVs), electronic devices and others has
brought tremendous attention on the need for high energy density batteries with reliable …

Prospect and reality of Ni‐rich cathode for commercialization

J Kim, H Lee, H Cha, M Yoon, M Park… - Advanced energy …, 2018 - Wiley Online Library
The layered nickel‐rich cathode materials are considered as promising cathode materials
for lithium‐ion batteries (LIBs) due to their high reversible capacity and low cost. However …

Challenges and strategies to advance high‐energy nickel‐rich layered lithium transition metal oxide cathodes for harsh operation

GL Xu, X Liu, A Daali, R Amine… - Advanced functional …, 2020 - Wiley Online Library
Nickel‐rich layered lithium transition metal oxides (LiNi1− x− yCoxMnyO2 and LiNi1− x−
yCoxAlyO2, x+ y≤ 0.2) are the most attractive cathode materials for the next generation …

The development and future of lithium ion batteries

GE Blomgren - Journal of The Electrochemical Society, 2016 - iopscience.iop.org
This year, the battery industry celebrates the 25 th anniversary of the introduction of the
lithium ion rechargeable battery by Sony Corporation. The discovery of the system dates …