Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity

AV Bolsinov, SV Matveev, AT Fomenko - Uspekhi matematicheskikh …, 1990 - mathnet.ru
AV Bolsinov, SV Matveev, AT Fomenko, “Topological classification of integrable Hamiltonian
systems with two degrees of freedom. List of systems of small complexity”, Uspekhi Mat …

A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom

AT Fomenko, K Tsishang - Mathematics of the USSR-Izvestiya, 1991 - iopscience.iop.org
A new topological invariant is constructed which classifies integrable Hamiltonian systems
with two degrees of freedom (admitting a Bott integral). A criterion for the equivalence of Bott …

Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы

АТ Фоменко, Х Цишанг - Известия Российской академии наук. Серия …, 1990 - mathnet.ru
В работе строится новый топологический инвариант, классифицирующий
интегрируемые гамильтоновы системы с двумя степенями свободы (обладающие …

Complexity theory of three-dimensional manifolds

SV Matveev - Acta Applicandae Mathematica, 1990 - Springer
The complexity of a 3-manifold is a whole number which measures how complicated a
combinatorial description of the manifold must be. It has many pleasant properties, among …

Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry

AV Bolsinov, VS Matveev, AT Fomenko - Sbornik: Mathematics, 1998 - iopscience.iop.org
Classical and new results on integrable geodesic flows on two-dimensional surfaces are
reviewed. The central question is the classification of such flows up to various equivalences …

Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского

ЕЕ Каргинова - Математический сборник, 2020 - mathnet.ru
1.1. История вопроса. Математический биллиард–движение материальной точки
(шара) в плоской области, ограниченной кусочно гладкой кривой. Вопросам об …

Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom

AT Fomenko - The Geometry of Hamiltonian Systems: Proceedings of …, 1991 - Springer
This paper is based on the series of lectures which were delivered by the author in 1989 at
the Mathematical Sciences Research Institute in Berkeley. As part of the year-long 1988 …

[图书][B] Integrable geodesic flows on two-dimensional surfaces

AV Bolsinov, AT Fomenko - 2000 - Springer
Geodesic flows of Riemannian metrics on manifolds are one of the classical objects in
geometry. A particular place among them is occupied by integrable geodesic flows. We …

Topology of the spaces of Morse functions on surfaces

E Kudryavtseva - arXiv preprint arXiv:1104.4792, 2011 - arxiv.org
Let $ M $ be a smooth closed orientable surface, and let $ F $ be the space of Morse
functions on $ M $ such that at least $\chi (M)+ 1$ critical points of each function of $ F $ are …

On the homotopy type of spaces of Morse functions on surfaces

EA Kudryavtseva - Sbornik: Mathematics, 2013 - iopscience.iop.org
Let be a smooth closed orientable surface. Let be the space of Morse functions on with a
fixed number of critical points of each index such that at least critical points are labelled by …