Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures

M Liero, A Mielke, G Savaré - Inventiones mathematicae, 2018 - Springer
We develop a full theory for the new class of Optimal Entropy-Transport problems between
nonnegative and finite Radon measures in general topological spaces. These problems …

Calculus, heat flow and curvature-dimension bounds in metric measure spaces

L Ambrosio - Proceedings of the International Congress of …, 2018 - World Scientific
The theory of curvature-dimension bounds for nonsmooth spaces has several motivations:
the study of functional and geometric inequalities in structures which arc very far from being …

Задача Канторовича оптимальной транспортировки мер: новые направления исследований

ВИ Богачев - Успехи математических наук, 2022 - mathnet.ru
В работе дан обзор исследований последнего десятилетия и приведены новые
результаты по различным новым модификациям классической задачи Канторовича …

Kantorovich problem of optimal transportation of measures: new directions of research

VI Bogachev - Uspekhi Matematicheskikh Nauk, 2022 - mathnet.ru
VI Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of
research”, Uspekhi Mat. Nauk, 77:5(467) (2022), 3–52; Russian Math. Surveys, 77:5 (2022) …

Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications

F Cavalletti, A Mondino - arXiv preprint arXiv:2004.08934, 2020 - arxiv.org
The goal of the present work is three-fold. The first goal is to set foundational results on
optimal transport in Lorentzian (pre-) length spaces, including cyclical monotonicity, stability …

[HTML][HTML] Gradient flows and evolution variational inequalities in metric spaces. I: Structural properties

M Muratori, G Savaré - Journal of Functional Analysis, 2020 - Elsevier
This is the first of a series of papers devoted to a thorough analysis of the class of gradient
flows in a metric space (X, d) that can be characterized by Evolution Variational Inequalities …

Embedding of RCD⁎(K, N) spaces in L2 via eigenfunctions

L Ambrosio, S Honda, JW Portegies… - Journal of Functional …, 2021 - Elsevier
In this paper we study the family of embeddings Φ t of a compact RCD⁎(K, N) space (X, d,
m) into L 2 (X, m) via eigenmaps. Extending part of the classical results [10],[11] known for …

The general class of Wasserstein Sobolev spaces: density of cylinder functions, reflexivity, uniform convexity and Clarkson's inequalities

GE Sodini - Calculus of Variations and Partial Differential …, 2023 - Springer
We show that the algebra of cylinder functions in the Wasserstein Sobolev space H 1, q (P p
(X, d), W p, d, m) generated by a finite and positive Borel measure m on the (p, d) …

Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates

P Alonso-Ruiz, F Baudoin, L Chen, L Rogers… - Calculus of Variations …, 2020 - Springer
We introduce the class of bounded variation (BV) functions in a general framework of strictly
local Dirichlet spaces with doubling measure. Under the 2-Poincaré inequality and a weak …

A noncommutative transport metric and symmetric quantum Markov semigroups as gradient flows of the entropy

M Wirth - arXiv preprint arXiv:1808.05419, 2018 - arxiv.org
We study quantum Dirichlet forms and the associated symmetric quantum Markov
semigroups on noncommutative $ L^ 2$ spaces. It is known from the work of Cipriani and …