A survey on evaluation of large language models

Y Chang, X Wang, J Wang, Y Wu, L Yang… - ACM Transactions on …, 2024 - dl.acm.org
Large language models (LLMs) are gaining increasing popularity in both academia and
industry, owing to their unprecedented performance in various applications. As LLMs …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Alpacafarm: A simulation framework for methods that learn from human feedback

Y Dubois, CX Li, R Taori, T Zhang… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) such as ChatGPT have seen widespread adoption due to
their ability to follow user instructions well. Developing these LLMs involves a complex yet …

How far can camels go? exploring the state of instruction tuning on open resources

Y Wang, H Ivison, P Dasigi, J Hessel… - Advances in …, 2023 - proceedings.neurips.cc
In this work we explore recent advances in instruction-tuning language models on a range of
open instruction-following datasets. Despite recent claims that open models can be on par …

Toolllm: Facilitating large language models to master 16000+ real-world apis

Y Qin, S Liang, Y Ye, K Zhu, L Yan, Y Lu, Y Lin… - arXiv preprint arXiv …, 2023 - arxiv.org
Despite the advancements of open-source large language models (LLMs), eg, LLaMA, they
remain significantly limited in tool-use capabilities, ie, using external tools (APIs) to fulfill …

Self-rewarding language models

W Yuan, RY Pang, K Cho, S Sukhbaatar, J Xu… - arXiv preprint arXiv …, 2024 - arxiv.org
We posit that to achieve superhuman agents, future models require superhuman feedback
in order to provide an adequate training signal. Current approaches commonly train reward …

H2o: Heavy-hitter oracle for efficient generative inference of large language models

Z Zhang, Y Sheng, T Zhou, T Chen… - Advances in …, 2024 - proceedings.neurips.cc
Abstract Large Language Models (LLMs), despite their recent impressive accomplishments,
are notably cost-prohibitive to deploy, particularly for applications involving long-content …

Benchmarking large language models in retrieval-augmented generation

J Chen, H Lin, X Han, L Sun - Proceedings of the AAAI Conference on …, 2024 - ojs.aaai.org
Retrieval-Augmented Generation (RAG) is a promising approach for mitigating the
hallucination of large language models (LLMs). However, existing research lacks rigorous …

Yi: Open foundation models by 01. ai

A Young, B Chen, C Li, C Huang, G Zhang… - arXiv preprint arXiv …, 2024 - arxiv.org
We introduce the Yi model family, a series of language and multimodal models that
demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and …

Huatuogpt, towards taming language model to be a doctor

H Zhang, J Chen, F Jiang, F Yu, Z Chen, J Li… - arXiv preprint arXiv …, 2023 - arxiv.org
In this paper, we present HuatuoGPT, a large language model (LLM) for medical
consultation. The core recipe of HuatuoGPT is to leverage both\textit {distilled data from …