The transformational role of GPU computing and deep learning in drug discovery

M Pandey, M Fernandez, F Gentile, O Isayev… - Nature Machine …, 2022 - nature.com
Deep learning has disrupted nearly every field of research, including those of direct
importance to drug discovery, such as medicinal chemistry and pharmacology. This …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism

T Wang, J Sun, Q Zhao - Computers in biology and medicine, 2023 - Elsevier
Human ether-a-go-go-related gene (hERG) channel blockade by small molecules is a big
concern during drug development in the pharmaceutical industry. Failure or inhibition of …

Self-supervised graph transformer on large-scale molecular data

Y Rong, Y Bian, T Xu, W Xie, Y Wei… - Advances in neural …, 2020 - proceedings.neurips.cc
How to obtain informative representations of molecules is a crucial prerequisite in AI-driven
drug design and discovery. Recent researches abstract molecules as graphs and employ …

Drug discovery with explainable artificial intelligence

J Jiménez-Luna, F Grisoni, G Schneider - Nature Machine Intelligence, 2020 - nature.com
Deep learning bears promise for drug discovery, including advanced image analysis,
prediction of molecular structure and function, and automated generation of innovative …

[HTML][HTML] A compact review of molecular property prediction with graph neural networks

O Wieder, S Kohlbacher, M Kuenemann… - Drug Discovery Today …, 2020 - Elsevier
As graph neural networks are becoming more and more powerful and useful in the field of
drug discovery, many pharmaceutical companies are getting interested in utilizing these …

Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions

D Jiang, CY Hsieh, Z Wu, Y Kang, J Wang… - Journal of medicinal …, 2021 - ACS Publications
Accurate quantification of protein–ligand interactions remains a key challenge to structure-
based drug design. However, traditional machine learning (ML)-based methods based on …

Predicting drug–target interaction using a novel graph neural network with 3D structure-embedded graph representation

J Lim, S Ryu, K Park, YJ Choe, J Ham… - Journal of chemical …, 2019 - ACS Publications
We propose a novel deep learning approach for predicting drug–target interaction using a
graph neural network. We introduce a distance-aware graph attention algorithm to …

Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation

C Zhang, G Lin, F Liu, J Guo… - Proceedings of the …, 2019 - openaccess.thecvf.com
One-shot image segmentation aims to undertake the segmentation task of a novel class with
only one training image available. The difficulty lies in that image segmentation has …

Application advances of deep learning methods for de novo drug design and molecular dynamics simulation

Q Bai, S Liu, Y Tian, T Xu… - Wiley …, 2022 - Wiley Online Library
De novo drug design is a stationary way to build novel ligands in the confined pocket of
receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation …