[PDF][PDF] Degree for equivariant gradient maps

S Rybicki - Milan Journal of Mathematics, 2005 - researchgate.net
DEGREE FOR EQUIVARIANT GRADIENT MAPS Contents 1. Introduction 1 2. Preliminaries 4 3.
Brouwer topological degree 9 3.1. Continuo Page 1 DEGREE FOR EQUIVARIANT GRADIENT …

A short treatise on the equivariant degree theory and its applications

Z Balanov, W Krawcewicz, S Rybicki… - Journal of Fixed Point …, 2010 - Springer
The aim of this survey is to give a profound introduction to equivariant degree theory,
avoiding as far as possible technical details and highly theoretical background. We describe …

Periodic solutions of symmetric Hamiltonian systems

D Strzelecki - Archive for Rational Mechanics and Analysis, 2020 - Springer
This paper is devoted to the study of periodic solutions of a Hamiltonian system ̇ z (t)= J ∇
H (z (t)) z˙(t)= J∇ H (z (t)), where H is symmetric under an action of a compact Lie group. We …

[PDF][PDF] EQUIVARIANT CONLEY INDEX VERSUS DEGREE FOR EQUIVARIANT GRADIENT MAPS.

A Gołębiewska, S Rybicki - Discrete & Continuous Dynamical …, 2013 - researchgate.net
In this article we study the relationship between the degree for invariant strongly indefinite
functionals and the equivariant Conley index. We prove that, under certain assumptions, a …

Otopy classes of equivariant maps

P Bartłomiejczyk, K Gęba, M Izydorek - Journal of Fixed Point Theory and …, 2010 - Springer
Otopy classes of equivariant maps Page 1 J. Fixed Point Theory Appl. 7 (2010) 145–160 DOI
10.1007/s11784-010-0013-0 Published online May 5, 2010 © Springer Basel AG 2010 Journal …

[PDF][PDF] Periodic solutions to O (2)-symmetric variational problems: O (2)× S1-equivariant gradient degree approach

Z Balanov, W Krawcewicz, H Ruan - Nonlinear analysis and …, 2010 - researchgate.net
To study symmetric properties of solutions to equivariant variational problems, Kazimierz
Geba introduced the so-called G-equivariant gradient degree taking its values in the Euler …

Applications of equivariant degree for gradient maps to symmetric Newtonian systems

H Ruan, S Rybicki - Nonlinear Analysis: Theory, Methods & Applications, 2008 - Elsevier
We consider G= Γ× S1 with Γ being a finite group, for which the complete Euler ring structure
in U (G) is described. The multiplication tables for Γ= D6, S4 and A5 are provided in the …

[HTML][HTML] Symmetric Liapunov center theorem for minimal orbit

E Pérez-Chavela, S Rybicki, D Strzelecki - Journal of Differential Equations, 2018 - Elsevier
Using the techniques of equivariant bifurcation theory we prove the existence of non-
stationary periodic solutions of Γ-symmetric systems q¨(t)=−∇ U (q (t)) in any neighborhood …

[PDF][PDF] Gradient otopies of gradient local maps

P Bartłomiejczyk, P Nowak-Przygodzki - Fund. Math, 2011 - researchgate.net
GRADIENT OTOPIES OF GRADIENT LOCAL MAPS Introduction In 1990 A. Parusiński [7]
published a surprising result. If two gradient v Page 1 GRADIENT OTOPIES OF GRADIENT …

Bifurcations of Solutions of SO(2)-Symmetric Nonlinear Problems with Variational Structure

S Rybicki - Handbook of Topological Fixed Point Theory, 2005 - Springer
One of the strongest and the most popular tools in topological nonlinear analysis are the
Brouwer topological degree and its infinite-dimensional generalization the Leray–Schauder …