Z Hu, G Wang, JD Abernethy - Advances in Neural …, 2024 - proceedings.neurips.cc
The projection operation is a critical component in a wide range of optimization algorithms, such as online gradient descent (OGD), for enforcing constraints and achieving optimal …
R Chernov, K Drach, K Tatarko - Advances in Mathematics, 2019 - Elsevier
We consider the class of λ-concave bodies in R n+ 1; that is, convex bodies with the property that each of their boundary points supports a tangent ball of radius 1/λ that lies locally …
RF De Lima, F Manfio, JP dos Santos - arXiv preprint arXiv:2008.09805, 2020 - arxiv.org
We consider hypersurfaces of products $ M\times\mathbb R $ with constant $ r $-th mean curvature $ H_r\ge 0$(to be called $ H_r $-hypersurfaces), where $ M $ is an arbitrary …
K Drach - arXiv preprint arXiv:2404.02739, 2024 - arxiv.org
arXiv:2404.02739v1 [math.DG] 3 Apr 2024 Page 1 THE BLASCHKE ROLLING THEOREM IN RIEMANNIAN MANIFOLDS OF BOUNDED CURVATURE KOSTIANTYN DRACH Abstract. We …
For a Riemannian manifold $ M^{n+ 1} $ and a compact domain $\Omega\subset M^{n+ 1} $ bounded by a hypersurface $\partial\Omega $ with normal curvature bounded below …
We consider simple closed curves in a Minkowski space. We give bounds of the total Minkowski curvature of the curve in terms of the total Euclidean curvature and of normal …
Для риманова многообразия Mn+ 1 и компактной области Ω⊂ Mn+ 1, граница которой есть гиперповерхность∂ Ω ограниченной снизу нормальной кривизны, приводятся …
SY Chang - arXiv preprint arXiv:2208.03400, 2022 - arxiv.org
Gaussian processes can be treated as subsets of a standard Hilbert space, however, the volume size relation between the underlying index space of random processes and its …
AA Borisenko, EA Olin - arXiv preprint arXiv:0711.0446, 2007 - arxiv.org
We show that the spheres in Hilbert geometry have the same volume growth entropy as those in the Lobachevsky space. We give the asymptotic estimates for the ratio of the volume …