An ensemble-policy non-intrusive load monitoring technique based entirely on deep feature-guided attention mechanism

Z Nie, Y Yang, Q Xu - Energy and Buildings, 2022 - Elsevier
Non-intrusive load monitoring (NILM), as an important part of intelligent electricity
consumption, improves the cognitive level of the load by analyzing the bus power in a …

Pay attention to your loss: understanding misconceptions about lipschitz neural networks

L Béthune, T Boissin, M Serrurier… - Advances in …, 2022 - proceedings.neurips.cc
Lipschitz constrained networks have gathered considerable attention in the deep learning
community, with usages ranging from Wasserstein distance estimation to the training of …

Robust one-class classification with signed distance function using 1-lipschitz neural networks

L Béthune, P Novello, T Boissin, G Coiffier… - arXiv preprint arXiv …, 2023 - arxiv.org
We propose a new method, dubbed One Class Signed Distance Function (OCSDF), to
perform One Class Classification (OCC) by provably learning the Signed Distance Function …

Orthogonal deep models as defense against black-box attacks

MAAK Jalwana, N Akhtar, M Bennamoun… - IEEE Access, 2020 - ieeexplore.ieee.org
Deep learning has demonstrated state-of-the-art performance for a variety of challenging
computer vision tasks. On one hand, this has enabled deep visual models to pave the way …

Development of the Neural Network Based Recognition Methods at VL Arlazarov's Scientific School

AV Sheshkus, AN Kondrashova… - Pattern Recognition and …, 2023 - Springer
This work is devoted to methods for improving the quality of artificial neural networks,
developed by a group of scientists led by VL Arlazarov. It describes various approaches both …

Certifiable Metric One Class Learning with adversarially trained Lipschitz Classifier

L Béthune, M Serrurier - NeurIPS ML Safety Workshop, 2022 - openreview.net
We propose a new Novelty Detection and One Class classifier, based on the smoothness
properties of orthogonal neural network, and on the properties of Hinge Kantorovich …

An Orthogonal Classification Layer with Kasami Sequences for Discriminative Feature Learning in Neural Networks

M Saadeldin, B Macnamee - 2021 IEEE 33rd International …, 2021 - ieeexplore.ieee.org
This paper proposes a novel Orthogonal Classification Layer (OCL) utilizing Kasami
sequences for neural networks trained for classification problems. OCL consists of a fully …

Leveraging Internal Gradients to Understand Deep Visual Models

MAAK Jalwana - 2021 - research-repository.uwa.edu.au
This dissertation makes four major contributions towards the understanding of deep visual
models. Firstly, it develops a model-centric technique that peeks inside the internal …

ЗАСТОСУВАННЯ ЗГОРТКОВИХ НЕЙРОННИХ МЕРЕЖ ДО ЗАДАЧ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ

NA Huk, DS Malyshko - Питання прикладної математики і …, 2020 - pm-mm.dp.ua
Анотація Роботу присвячено вибору архітектури згорткової нейронної мережі для
розв'язання задач класифікації зображень. Побудовано математичну модель …