Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities

L Zhang, L Zhang - IEEE Geoscience and Remote Sensing …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …

A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …

Glaze: Protecting artists from style mimicry by {Text-to-Image} models

S Shan, J Cryan, E Wenger, H Zheng… - 32nd USENIX Security …, 2023 - usenix.org
Recent text-to-image diffusion models such as MidJourney and Stable Diffusion threaten to
displace many in the professional artist community. In particular, models can learn to mimic …

Semantic communications: Principles and challenges

Z Qin, X Tao, J Lu, W Tong, GY Li - arXiv preprint arXiv:2201.01389, 2021 - arxiv.org
Semantic communication, regarded as the breakthrough beyond the Shannon paradigm,
aims at the successful transmission of semantic information conveyed by the source rather …

Consert: A contrastive framework for self-supervised sentence representation transfer

Y Yan, R Li, S Wang, F Zhang, W Wu, W Xu - arXiv preprint arXiv …, 2021 - arxiv.org
Learning high-quality sentence representations benefits a wide range of natural language
processing tasks. Though BERT-based pre-trained language models achieve high …

Improving robustness using generated data

S Gowal, SA Rebuffi, O Wiles… - Advances in …, 2021 - proceedings.neurips.cc
Recent work argues that robust training requires substantially larger datasets than those
required for standard classification. On CIFAR-10 and CIFAR-100, this translates into a …

Explainable ai: A review of machine learning interpretability methods

P Linardatos, V Papastefanopoulos, S Kotsiantis - Entropy, 2020 - mdpi.com
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption,
with machine learning systems demonstrating superhuman performance in a significant …

Peco: Perceptual codebook for bert pre-training of vision transformers

X Dong, J Bao, T Zhang, D Chen, W Zhang… - Proceedings of the …, 2023 - ojs.aaai.org
This paper explores a better prediction target for BERT pre-training of vision transformers.
We observe that current prediction targets disagree with human perception judgment. This …

Data augmentation can improve robustness

SA Rebuffi, S Gowal, DA Calian… - Advances in …, 2021 - proceedings.neurips.cc
Adversarial training suffers from robust overfitting, a phenomenon where the robust test
accuracy starts to decrease during training. In this paper, we focus on reducing robust …

Enhancing the transferability of adversarial attacks through variance tuning

X Wang, K He - Proceedings of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Deep neural networks are vulnerable to adversarial examples that mislead the models with
imperceptible perturbations. Though adversarial attacks have achieved incredible success …