AA Basalaev, AA Ionov - Symmetry, Integrability and Geometry: Methods …, 2024 - emis.de
Consider the pairs (f, G) with f= f (x1,..., xN) being a polynomial defining a quasihomogeneous singularity and G being a subgroup of SL (N, C), preserving f. In …
A Ionov - Journal of Pure and Applied Algebra, 2023 - Elsevier
McKay correspondence and orbifold equivalence - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in View PDF Download full issue …
AA Basalaev, AA Ionov - Theoretical and Mathematical Physics, 2021 - Springer
Abstract We study Landau–Ginzburg orbifolds (f, G) with f= x_1^ n+ ⋯+ x_N^ n and G= S\ltimes G^ d, where S ⊆ S_N and G^ d is either the maximal group of scalar symmetries of f …
A Basalaev, A Ionov - Journal of Geometry and Physics, 2022 - Elsevier
For a polynomial f= x 1 n+…+ x N n let G f be the non–abelian maximal group of symmetries of f. This is a group generated by all g∈ GL (N, C), rescaling and permuting the variables, so …
A Basalaev - arXiv preprint arXiv:2406.12490, 2024 - arxiv.org
The results of A. Chiodo, Y. Ruan and M. Krawitz associate the mirror partner Calabi-Yau variety $ X $ to a Landau--Ginzburg orbifold $(f, G) $ if $ f $ is an invertible polynomial …
CH Cho, S Lee - arXiv preprint arXiv:2007.11732, 2020 - arxiv.org
A version of mirror symmetry predicts a ring isomorphism between quantum cohomology of a symplectic manifold and Jacobian algebra of the Landau-Ginzburg mirror, and for toric …
Изучаются орибифолды Гинзбурга–Ландау (f, G) в случае f= xn 1+···+ xn N и G= S Gd, где S⊆ SN и Gd–либо максимальная группа скалярных симметрий многочлена f, либо …
W Ebeling, A Takahashi - Mathematische Zeitschrift, 2020 - Springer
We consider a pair consisting of an invertible polynomial and a finite abelian group of its symmetries. Berglund, Hübsch, and Henningson proposed a duality between such pairs …