Federated learning for smart healthcare: A survey

DC Nguyen, QV Pham, PN Pathirana, M Ding… - ACM Computing …, 2022 - dl.acm.org
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …

Distributed learning in wireless networks: Recent progress and future challenges

M Chen, D Gündüz, K Huang, W Saad… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …

Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing

W Xu, Z Yang, DWK Ng, M Levorato… - IEEE journal of …, 2023 - ieeexplore.ieee.org
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …

Beyond transmitting bits: Context, semantics, and task-oriented communications

D Gündüz, Z Qin, IE Aguerri, HS Dhillon… - IEEE Journal on …, 2022 - ieeexplore.ieee.org
Communication systems to date primarily aim at reliably communicating bit sequences.
Such an approach provides efficient engineering designs that are agnostic to the meanings …

Edge artificial intelligence for 6G: Vision, enabling technologies, and applications

KB Letaief, Y Shi, J Lu, J Lu - IEEE Journal on Selected Areas …, 2021 - ieeexplore.ieee.org
The thriving of artificial intelligence (AI) applications is driving the further evolution of
wireless networks. It has been envisioned that 6G will be transformative and will …

[HTML][HTML] Federated learning for 6G: Applications, challenges, and opportunities

Z Yang, M Chen, KK Wong, HV Poor, S Cui - Engineering, 2022 - Elsevier
Standard machine-learning approaches involve the centralization of training data in a data
center, where centralized machine-learning algorithms can be applied for data analysis and …

Client selection and bandwidth allocation in wireless federated learning networks: A long-term perspective

J Xu, H Wang - IEEE Transactions on Wireless …, 2020 - ieeexplore.ieee.org
This paper studies federated learning (FL) in a classic wireless network, where learning
clients share a common wireless link to a coordinating server to perform federated model …

Communication-efficient edge AI: Algorithms and systems

Y Shi, K Yang, T Jiang, J Zhang… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields,
ranging from speech processing, image classification to drug discovery. This is driven by the …

Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities

X Yuan, YJA Zhang, Y Shi, W Yan… - IEEE wireless …, 2021 - ieeexplore.ieee.org
Reconfigurable intelligent surfaces (RISs) are regarded as a promising emerging hardware
technology to improve the spectrum and energy efficiency of wireless networks by artificially …

A survey on over-the-air computation

A Şahin, R Yang - IEEE Communications Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Communication and computation are often viewed as separate tasks. This approach is very
effective from the perspective of engineering as isolated optimizations can be performed …