[HTML][HTML] On perfect powers that are sums of cubes of a nine term arithmetic progression

N Coppola, M Curcó-Iranzo, M Khawaja, V Patel… - Indagationes …, 2024 - Elsevier
We study the equation (x− 4 r) 3+(x− 3 r) 3+(x− 2 r) 3+(x− r) 3+ x 3+(x+ r) 3+(x+ 2 r) 3+(x+ 3 r)
3+(x+ 4 r) 3= yp, which is a natural continuation of previous works carried out by A. Argáez …

Power values of power sums: a survey

N Coppola, M Curcó-Iranzo, M Khawaja, V Patel… - Women in Numbers …, 2024 - Springer
Research on power values of power sums has gained much attention of late, partially due to
the explosion of refinements in multiple advanced tools in (computational) number theory in …

Perfect powers that are sums of squares of an arithmetic progression

D Kundu, V Patel - Rocky Mountain Journal of Mathematics, 2021 - projecteuclid.org
Perfect powers that are sums of squares of an arithmetic progression Page 1 ROCKY
MOUNTAIN JOURNAL OF MATHEMATICS Volume 51 (2021), No. 3, 933–949 DOI: 10.1216 …

Power Values of Power Sums: A Survey

V Patel, Ö Ülkem - Women in Numbers Europe IV: Research …, 2024 - books.google.com
Power Values of Power Sums: A Survey Page 167 Power Values of Power Sums: A Survey
Nirvana Coppola, Mar Curcó-Iranzo, Maleeha Khawaja, Vandita Patel, and Özge Ülkem Check …

On the sum of fifth powers in arithmetic progression

LV Torcomian - arXiv preprint arXiv:2404.03457, 2024 - arxiv.org
In this paper we study equation $$(x-dr)^ 5+\cdots+ x^ 5+\cdots+ (x+ dr)^ 5= y^ p $$ under
the condition $\gcd (x, r)= 1$. We present a recipe for proving the non-existence of non-trivial …

Perfect powers in sum of three fifth powers

P Das, PK Dey, A Koutsianas, N Tzanakis - Journal of Number Theory, 2022 - Elsevier
Perfect powers in sum of three fifth powers - ScienceDirect Skip to main contentSkip to article
Elsevier logo Journals & Books Search RegisterSign in View PDF Download full issue Search …

On the power values of the sum of three squares in arithmetic progression

M Le, G Soydan - Mathematical Communications, 2022 - hrcak.srce.hr
Sažetak In this paper, using a deep result on the existence of primitive divisors of Lehmer
numbers due to Y. Bilu, G. Hanrot and PM Voutier, we first give an explicit formula for all …

Short note A note on the Diophantine equation. x C 1/3 C. x C 2/3 CC. 2x/3 D yn

NX Tho - 2021 - ems.press
A note on the Diophantine equation (x+1)3+(x+2)3+⋯+(2x)3=yn Page 1 Elem. Math. (Online
first) DOI 10.4171/EM/450 © 2021 Swiss Mathematical Society Elemente der Mathematik …

[PDF][PDF] On Some Diophantine equations with power sums

G SOYDAN - Workshop on Diophantine …, 2023 - diophantlehmer.sciencesconf.org
Japanese mathematician Seki Takakazu (1642-1708), published also posthumously, in
1712 (and thus 1 year before Bernoulli!), the formula for the sums of powers and the …

A note on the Diophantine equation $(x+ 1)^ 3+(x+ 2)^ 3+\cdots+ (2x)^ 3= y^ n$

NX Tho - Elemente der Mathematik, 2021 - ems.press
A note on the Diophantine equation $(x + 1)^{3} + (x + 2)^{3} + \cdots + (2x)^{3} = y^{n}$ Page 1
Elemente der Mathematik 77 (2022), 142–143 DOI 10.4171/EM/450 © 2021 Swiss …