[PDF][PDF] A novel smart deepfake video detection system

M Elpeltagy, A Ismail, MS Zaki… - International Journal of …, 2023 - researchgate.net
Rapid advancements in deep learning-based technologies have developed several
synthetic video and audio generation methods producing incredibly hyper-realistic …

A comparative study of non-deep learning, deep learning, and ensemble learning methods for sunspot number prediction

Y Dang, Z Chen, H Li, H Shu - Applied Artificial Intelligence, 2022 - Taylor & Francis
Solar activity has significant impacts on human activities and health. One most commonly
used measure of solar activity is the sunspot number. This paper compares three important …

prediksi kasus aktif kumulatif covid-19 di indonesia menggunakan model regresi linier berganda

ERS Putri, F Novianti, YRA Yasmin… - Transformasi …, 2021 - ejournal.unibabwi.ac.id
Regresi linier berganda digunakan untuk mengidentifikasi hubungan antara variabel
respons dengan minimal dua variabel prediktor. Variabel respons merupakan variabel yang …

Stacked 1D Convolutional LSTM (sConvLSTM1D) Model for Effective Prediction of Sunspot Time Series

A Kumar, V Kumar - Solar Physics, 2023 - Springer
A multi-layer, deep-learning (DL) architecture consisting of stacked Convolutional Long
Short Term Memory (sConvLSTM1D) layers is proposed to forecast the sunspot number …

Enhancing Solar Cycle 25 and 26 Forecasting with Vipin-Deep-Decomposed-Recomposed Rolling-window (vD2R2w) Model on Sunspot Number Observations

V Kumar - Solar Physics, 2024 - Springer
Effective predicting sunspot numbers (SSN) is the complex task of studying space weather,
solar activity, satellite communication, and Earth's climate. Developing a reliable SSN …

Novel residual hybrid machine learning for solar activity prediction in smart cities

RA Abdulkadir, MK Hasan, S Islam… - Earth Science …, 2023 - Springer
Predicting global solar activity is crucial for smart cities, especially for space activities,
communication industries, and climate change monitoring. The recently developed models …

Probabilistic sunspot predictions with a gated recurrent units-based combined model guided by pinball loss

Z Cui, Z Ding, J Xu, S Zhang, J Wu, W Lian - Scientific Reports, 2024 - nature.com
Sunspots play a crucial role in both weather forecasting and the monitoring of solar storms.
In this work, we propose a novel combined model for sunspot prediction using improved …

[PDF][PDF] Predicting Velocity and Direction of Ocean Surface Currents using Elman Recurrent Neural Network Method.

EA Kusnanti, DC Rini Novitasari… - Journal of Information …, 2022 - researchgate.net
Background: Ocean surface currents need to be monitored to minimize accidents at ship
crossings. One way to predict ocean currents—and estimate the danger level of the sea—is …

The Sunspot Number Forecasting Using a Hybridization Model of EMD, LSTM and Attention Mechanism

J Yang, N Fu, H Chen - IEEJ Transactions on Electrical and …, 2023 - Wiley Online Library
Sunspot number forecasting is a significant task for human beings in order to observe solar
activity, and it is a classical chaotic time series. To improve the forecasting accuracy, we …

Peramalan Nilai Ekspor Migas di Indonesia dengan Model Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU)

PN Yulisa, M Al Haris, PR Arum - J Statistika: Jurnal Ilmiah …, 2023 - jurnal.unipasby.ac.id
Ekspor migas merupakan komoditas yang berperan penting dalam perekonomian negara
dan pengelolaannya harus dimaksimalkan demi kemakmuran dan kesejahteraan rakyat …