[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and challenges

S Luan, C Hua, Q Lu, L Ma, L Wu, X Wang… - arXiv preprint arXiv …, 2024 - arxiv.org
Homophily principle,\ie {} nodes with the same labels or similar attributes are more likely to
be connected, has been commonly believed to be the main reason for the superiority of …

Revisiting heterophily for graph neural networks

S Luan, C Hua, Q Lu, J Zhu, M Zhao… - Advances in neural …, 2022 - proceedings.neurips.cc
Abstract Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using
graph structures based on the relational inductive bias (homophily assumption). While …

On over-squashing in message passing neural networks: The impact of width, depth, and topology

F Di Giovanni, L Giusti, F Barbero… - International …, 2023 - proceedings.mlr.press
Abstract Message Passing Neural Networks (MPNNs) are instances of Graph Neural
Networks that leverage the graph to send messages over the edges. This inductive bias …

Rethinking graph neural networks for anomaly detection

J Tang, J Li, Z Gao, J Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As
one of the key components for GNN design is to select a tailored spectral filter, we take the …

A survey on oversmoothing in graph neural networks

TK Rusch, MM Bronstein, S Mishra - arXiv preprint arXiv:2303.10993, 2023 - arxiv.org
Node features of graph neural networks (GNNs) tend to become more similar with the
increase of the network depth. This effect is known as over-smoothing, which we …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …

Beyond low-frequency information in graph convolutional networks

D Bo, X Wang, C Shi, H Shen - Proceedings of the AAAI conference on …, 2021 - ojs.aaai.org
Graph neural networks (GNNs) have been proven to be effective in various network-related
tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which …

Drew: Dynamically rewired message passing with delay

B Gutteridge, X Dong, MM Bronstein… - International …, 2023 - proceedings.mlr.press
Message passing neural networks (MPNNs) have been shown to suffer from the
phenomenon of over-squashing that causes poor performance for tasks relying on long …