Enhancing intrusion detection: a hybrid machine and deep learning approach

M Sajid, KR Malik, A Almogren, TS Malik… - Journal of Cloud …, 2024 - Springer
The volume of data transferred across communication infrastructures has recently increased
due to technological advancements in cloud computing, the Internet of Things (IoT), and …

NIDS-CNNLSTM: Network intrusion detection classification model based on deep learning

J Du, K Yang, Y Hu, L Jiang - IEEE Access, 2023 - ieeexplore.ieee.org
Intrusion detection is the core topic of network security, and the intrusion detection algorithm
based on deep learning has become a research hotspot in network security. In this paper, a …

Analysis, design, and comparison of machine-learning techniques for networking intrusion detection

P Dini, S Saponara - Designs, 2021 - mdpi.com
The use of machine-learning techniques is becoming more and more frequent in solving all
those problems where it is difficult to rationally interpret the process of interest. Intrusion …

[PDF][PDF] Deep learning and machine learning based anomaly detection in internet of things environments

A Gökdemir, A Calhan - Journal of the Faculty of Engineering …, 2022 - scholar.archive.org
Purpose: As the use of Internet of Things (IoT) systems has become widespread, cyber-
attacks against these systems have also increased. Cyber-attacks occurring in IoT …

Makine öğrenmesi ve öznitelik seçim yöntemleriyle saldırı tespiti

O Kaynar, H Arslan, Y Görmez, YE Işık - Bilişim Teknolojileri Dergisi, 2018 - dergipark.org.tr
Bilgisayar ve internetin, günlük yaşamın vazgeçilmez bir unsuru haline gelmesi ile birlikte
internet sitelerinin ve web tabanlı uygulamaların sayısı da hızla artmıştır. Bilgi, fikir, para gibi …

TwoViewDensityNet: two-view mammographic breast density classification based on deep convolutional neural network

M Busaleh, M Hussain, HA Aboalsamh, SA Al Sultan - Mathematics, 2022 - mdpi.com
Dense breast tissue is a significant factor that increases the risk of breast cancer. Current
mammographic density classification approaches are unable to provide enough …

Framework for identifying network attacks through packet inspection using machine learning

R Shanker, P Agrawal, A Singh, MW Bhatt - Nonlinear Engineering, 2023 - degruyter.com
In every network, traffic anomaly detection system is an essential field of study. In the
communication system, there are various protocols and intrusions. It is still a testing area to …

Network intrusion detection based on improved cnn

S Wang, Z Yang, A Xiao - 2022 5th International Conference on …, 2022 - ieeexplore.ieee.org
This paper aims to improve the defects of traditional convolutional neural networks in
intrusion detection systems and provide an analysis of dynamic data flow. The system first …

Nesnelerin interneti ortamlarında derin öğrenme ve makine öğrenmesi tabanlı anomali tespiti

A Gökdemr, A Çalhan - Gazi Üniversitesi Mühendislik Mimarlık …, 2022 - dergipark.org.tr
Internet ve kablosuz haberleşme teknolojilerinin gelişmesi paralelinde IoT alanında yapılan
çalışmalar da ilerlemektedir. Sağlık alanında kullanılan IoT sensörleri ile hastaları yakından …

Network intrusion detection system using machine learning approach

M Teli, R Singh, M Kyada, R Mangrulkar - … Computing Technologies and …, 2020 - Springer
Internet has connected the world globally. In this Internet environment, there are many risks
of network attacks. With the information density and global reach, the risk of integrity and …