A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

A comprehensive survey on design and application of autoencoder in deep learning

P Li, Y Pei, J Li - Applied Soft Computing, 2023 - Elsevier
Autoencoder is an unsupervised learning model, which can automatically learn data
features from a large number of samples and can act as a dimensionality reduction method …

Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network

X Chen, H Shao, Y Xiao, S Yan, B Cai, B Liu - Mechanical Systems and …, 2023 - Elsevier
Most of the existing research on unsupervised cross-domain intelligent fault diagnosis is
based on single-source domain adaptation, which fails to simultaneously utilize various …

Deep transfer learning for bearing fault diagnosis: A systematic review since 2016

X Chen, R Yang, Y Xue, M Huang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The traditional deep learning-based bearing fault diagnosis approaches assume that the
training and test data follow the same distribution. This assumption, however, is not always …

A review of deep transfer learning and recent advancements

M Iman, HR Arabnia, K Rasheed - Technologies, 2023 - mdpi.com
Deep learning has been the answer to many machine learning problems during the past two
decades. However, it comes with two significant constraints: dependency on extensive …

Deep discriminative transfer learning network for cross-machine fault diagnosis

Q Qian, Y Qin, J Luo, Y Wang, F Wu - Mechanical Systems and Signal …, 2023 - Elsevier
Many domain adaptation methods have been presented to deal with the distribution
alignment and knowledge transfer between the target domain and the source domain …

Machine learning and data mining in manufacturing

A Dogan, D Birant - Expert Systems with Applications, 2021 - Elsevier
Manufacturing organizations need to use different kinds of techniques and tools in order to
fulfill their foundation goals. In this aspect, using machine learning (ML) and data mining …

Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds

H Cao, H Shao, X Zhong, Q Deng, X Yang… - Journal of Manufacturing …, 2022 - Elsevier
The existing deep transfer learning-based intelligent fault diagnosis studies for machinery
mainly consider steady speed scenarios, and there exists a problem of low diagnosis …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

Highly efficient fault diagnosis of rotating machinery under time-varying speeds using LSISMM and small infrared thermal images

X Li, H Shao, S Lu, J Xiang, B Cai - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The existing fault diagnosis methods of rotating machinery constructed with both shallow
learning and deep learning models are mostly based on vibration analysis under steady …