Quantum link homology via trace functor I

A Beliakova, KK Putyra, SM Wehrli - Inventiones mathematicae, 2019 - Springer
Motivated by topology, we develop a general theory of traces and shadows for an
endobicategory, which is a pair: bicategory and endobifunctor. For a graded linear …

Khovanov homology and the cinquefoil

JA Baldwin, Y Hu, S Sivek - Journal of the European Mathematical …, 2024 - ems.press
We prove that Khovanov homology with coefficients in Z= 2Z detects the. 2; 5/torus knot. Our
proof makes use of a wide range of deep tools in Floer homology, Khovanov homology, and …

Invariants of 4-manifolds from Khovanov-Rozansky link homology

S Morrison, K Walker, P Wedrich - Geom. Topol, 2022 - msp.org
Following the seminal articles of Jones, Witten and Atiyah [38; 86; 3], Crane and Frenkel
outlined their vision for an algebraic construction of invariants of smooth 4–dimensional …

Skein lasagna modules and handle decompositions

C Manolescu, K Walker, P Wedrich - Advances in Mathematics, 2023 - Elsevier
The skein lasagna module is an extension of Khovanov–Rozansky homology to the setting
of a four-manifold and a link in its boundary. This invariant plays the role of the Hilbert space …

Kirby belts, categorified projectors, and the skein lasagna module of s2× S2

IA Sullivan, M Zhang - arXiv preprint arXiv:2402.01081, 2024 - ems.press
We interpret Manolescu–Neithalath's cabled Khovanov homology formula for computing
Morrison–Walker–Wedrich's KhR2 skein lasagna module as a homotopy colimit (mapping …

Gl2 foam functoriality and skein positivity

H Queffelec - arXiv preprint arXiv:2209.08794, 2022 - arxiv.org
We prove full functoriality of Khovanov homology for tangled framed gl2 webs. We use this
functoriality result to prove a strong positivity result for (orientable) surface skein algebras …

Lee filtration structure of torus links

Q Ren - arXiv preprint arXiv:2305.16089, 2023 - arxiv.org
We determine the quantum filtration structure of the Lee homology of all torus links. In
particular, this determines the $ s $-invariant of a torus link equipped with any orientation. In …

Khovanov homology and categorification of skein modules

H Queffelec, P Wedrich - Quantum Topology, 2021 - ems.press
Khovanov homology and categorification of skein modules Page 1 Quantum Topol. 12 (2021),
129–209 DOI 10.4171/QT/148 © 2021 European Mathematical Society Published by EMS Press …

Sutured annular Khovanov-Rozansky homology

H Queffelec, D Rose - Transactions of the American Mathematical Society, 2018 - ams.org
We introduce an $\mathfrak {sl} _n $ homology theory for knots and links in the thickened
annulus. To do so, we first give a fresh perspective on sutured annular Khovanov homology …

Annular evaluation and link homology

H Queffelec, DEV Rose, A Sartori - arXiv preprint arXiv:1802.04131, 2018 - arxiv.org
We use categorical annular evaluation to give a uniform construction of both $\mathfrak {sl}
_n $ and HOMFLYPT Khovanov-Rozansky link homology, as well as annular versions of …