Kähler–Ricci flow, Kähler–Einstein metric, and K–stability

X Chen, S Sun, B Wang - Geometry & Topology, 2018 - msp.org
We prove the existence of a Kähler–Einstein metric on a K–stable Fano manifold using the
recent compactness result on Kähler–Ricci flows. The key ingredient is an algebrogeometric …

Compactness theory of the space of super Ricci flows

RH Bamler - Inventiones mathematicae, 2023 - Springer
We develop a compactness theory for super Ricci flows, which lays the foundations for the
partial regularity theory in Bamler (Structure Theory of Non-collapsed Limits of Ricci Flows …

Convergence of Ricci flows with bounded scalar curvature

R Bamler - Annals of Mathematics, 2018 - projecteuclid.org
In this paper we prove convergence and compactness results for Ricci flows with bounded
scalar curvature and entropy. More specifically, we show that Ricci flows with bounded …

Diameter estimates for long-time solutions of the Kähler–Ricci flow

W Jian, J Song - Geometric and Functional Analysis, 2022 - Springer
It is well known that the Kähler–Ricci flow on a Kähler manifold X admits a long-time solution
if and only if X is a minimal model, ie, the canonical line bundle KX is nef. The abundance …

KAWA lecture notes on the Kähler–Ricci flow

V Tosatti - Annales de la Faculté des sciences de …, 2018 - afst.centre-mersenne.org
These lecture notes provide an introduction to the study of the Kähler–Ricci flow on compact
Kähler manifolds, and a detailed exposition of some recent developments. RÉSUMÉ.— Ces …

[PDF][PDF] The local entropy along Ricci flow---Part A: the no-local-collapsing theorems

B Wang - arXiv preprint arXiv:1706.08485, 2017 - arxiv.org
We localize the entropy functionals of G. Perelman and generalize his no-local-collapsing
theorem and pseudo-locality theorem. Our generalization is technically inspired by further …

The local entropy along Ricci flow---Part B: the pseudo-locality theorems

B Wang - arXiv preprint arXiv:2010.09981, 2020 - arxiv.org
We localize the entropy functionals of G. Perelman and generalize his no-local-collapsing
theorem and pseudo-locality theorem. Our generalization is technically inspired by further …

On polynomial convergence to tangent cones for singular K\" ahler-Einstein metrics

J Zhang - arXiv preprint arXiv:2407.07382, 2024 - arxiv.org
Let $(Z, p) $ be a pointed Gromov-Hausdorff limit of non-collapsing K\" ahler-Einstein metrics
with uniformly bounded Ricci curvature. We show that the singular K\" ahler-Einstein metric …

Rigidity of the round cylinders in Ricci shrinkers

Y Li, B Wang - Journal of Differential Geometry, 2024 - projecteuclid.org
RIGIDITY OF THE ROUND CYLINDERS IN RICCI SHRINKERS Yu Li & Bing Wang Abstract
Contents 1. Introduction 817 2. Preliminaries Page 1 j. differential geometry 127 (2024) 817-897 …

Tian's partial C0-estimate implies Hamilton-Tian's conjecture

F Wang, X Zhu - Advances in Mathematics, 2021 - Elsevier
In this paper, we prove Hamilton-Tian conjecture for Kähler-Ricci flow based on a recent
work of Liu-Székelyhidi on Tian's partical C 0-estimate for polarized Kähler metrics with Ricci …