A survey on federated unlearning: Challenges, methods, and future directions

Z Liu, Y Jiang, J Shen, M Peng, KY Lam… - ACM Computing …, 2024 - dl.acm.org
In recent years, the notion of “the right to be forgotten”(RTBF) has become a crucial aspect of
data privacy for digital trust and AI safety, requiring the provision of mechanisms that support …

Byzantine machine learning: A primer

R Guerraoui, N Gupta, R Pinot - ACM Computing Surveys, 2024 - dl.acm.org
The problem of Byzantine resilience in distributed machine learning, aka Byzantine machine
learning, consists of designing distributed algorithms that can train an accurate model …

A robust privacy-preserving federated learning model against model poisoning attacks

A Yazdinejad, A Dehghantanha… - IEEE Transactions …, 2024 - ieeexplore.ieee.org
Although federated learning offers a level of privacy by aggregating user data without direct
access, it remains inherently vulnerable to various attacks, including poisoning attacks …

The impact of adversarial attacks on federated learning: A survey

KN Kumar, CK Mohan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Federated learning (FL) has emerged as a powerful machine learning technique that
enables the development of models from decentralized data sources. However, the …

A survey on ChatGPT: AI-generated contents, challenges, and solutions

Y Wang, Y Pan, M Yan, Z Su… - IEEE Open Journal of the …, 2023 - ieeexplore.ieee.org
With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-
generated content (AIGC) has garnered increasing attention and is leading a paradigm shift …

Fldetector: Defending federated learning against model poisoning attacks via detecting malicious clients

Z Zhang, X Cao, J Jia, NZ Gong - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Federated learning (FL) is vulnerable to model poisoning attacks, in which malicious clients
corrupt the global model via sending manipulated model updates to the server. Existing …

ShieldFL: Mitigating model poisoning attacks in privacy-preserving federated learning

Z Ma, J Ma, Y Miao, Y Li… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Privacy-Preserving Federated Learning (PPFL) is an emerging secure distributed learning
paradigm that aggregates user-trained local gradients into a federated model through a …

Privacy-preserving Byzantine-robust federated learning via blockchain systems

Y Miao, Z Liu, H Li, KKR Choo… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Federated learning enables clients to train a machine learning model jointly without sharing
their local data. However, due to the centrality of federated learning framework and the …

[HTML][HTML] {FLAME}: Taming backdoors in federated learning

TD Nguyen, P Rieger, R De Viti, H Chen… - 31st USENIX Security …, 2022 - usenix.org
With the worldwide COVID-19 pandemic in 2020 and 2021 necessitating working from
home, corporate Virtual Private Networks (VPNs) have become an important item securing …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …