Regularity for shape optimizers: the degenerate case

D Kriventsov, F Lin - Communications on Pure and Applied …, 2019 - Wiley Online Library
We consider minimizers of where F is a function nondecreasing in each parameter, and λk
(Ω) is the kth Dirichlet eigenvalue of ω. This includes, in particular, functions F that depend …

Computational methods for extremal Steklov problems

E Akhmetgaliyev, CY Kao, B Osting - SIAM Journal on Control and …, 2017 - SIAM
We develop a computational method for extremal Steklov eigenvalue problems and apply it
to study the problem of maximizing the p th Steklov eigenvalue as a function of the domain …

Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems

E Oudet, CY Kao, B Osting - ESAIM: Control, Optimisation and …, 2021 - esaim-cocv.org
Recently Fraser and Schoen showed that the solution of a certain extremal Steklov
eigenvalue problem on a compact surface with boundary can be used to generate a free …

[HTML][HTML] The method of fundamental solutions applied to boundary eigenvalue problems

B Bogosel - Journal of Computational and Applied Mathematics, 2016 - Elsevier
We develop methods based on fundamental solutions to compute the Steklov, Wentzell and
Laplace–Beltrami eigenvalues in the context of shape optimization. In the class of smooth …

Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives

S Zhu - Journal of Optimization Theory and Applications, 2018 - Springer
We consider to solve numerically the shape optimization models with Dirichlet Laplace
eigenvalues. Both volume-constrained and volume unconstrained formulations of the model …

Maximization of Laplace− Beltrami eigenvalues on closed Riemannian surfaces

CY Kao, R Lai, B Osting - ESAIM: Control, Optimisation and Calculus of …, 2017 - numdam.org
Let (M, g) be a connected, closed, orientable Riemannian surface and denote by λk (M, g)
the kth eigenvalue of the Laplace− Beltrami operator on (M, g). In this paper, we consider the …

Computational approaches for extremal geometric eigenvalue problems

CY Kao, B Osting, E Oudet - Handbook of Numerical Analysis, 2023 - Elsevier
In an extremal eigenvalue problem, one considers a family of eigenvalue problems, each
with discrete spectra, and extremizes a chosen eigenvalue over the family. In this chapter …

Sharp quantitative stability of the Dirichlet spectrum near the ball

D Bucur, J Lamboley, M Nahon, R Prunier - arXiv preprint arXiv …, 2023 - arxiv.org
Let $\Omega\subset\mathbb {R}^ n $ be an open set with same volume as the unit ball $ B $
and let $\lambda_k (\Omega) $ be the $ k $-th eigenvalue of the Laplace operator of …

Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction

PRS Antunes, P Freitas - Applied Mathematics & Optimization, 2016 - Springer
We perform a numerical optimisation of the low frequencies of the Dirichlet Laplacian with
perimeter and surface area restrictions, in two and 3-dimensions, respectively. In the former …

Steklov eigenvalues of reflection-symmetric nearly circular planar domains

R Viator, B Osting - Proceedings of the Royal Society A, 2018 - royalsocietypublishing.org
We consider Steklov eigenvalues of reflection-symmetric, nearly circular, planar domains.
Treating such domains as perturbations of the disc, we obtain a second-order formal …