Cot-gan: Generating sequential data via causal optimal transport

T Xu, LK Wenliang, M Munn… - Advances in neural …, 2020 - proceedings.neurips.cc
We introduce COT-GAN, an adversarial algorithm to train implicit generative models
optimized for producing sequential data. The loss function of this algorithm is formulated …

Enlargement of filtration with finance in view

A Aksamit, M Jeanblanc - 2017 - Springer
At the end of the 1970s, Jean Jacod, Thierry Jeulin and Marc Yor started a systematic study
of enlargement of filtration which focuses on the properties of stochastic processes under a …

Задача Канторовича оптимальной транспортировки мер: новые направления исследований

ВИ Богачев - Успехи математических наук, 2022 - mathnet.ru
В работе дан обзор исследований последнего десятилетия и приведены новые
результаты по различным новым модификациям классической задачи Канторовича …

Kantorovich problem of optimal transportation of measures: new directions of research

VI Bogachev - Uspekhi Matematicheskikh Nauk, 2022 - mathnet.ru
VI Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of
research”, Uspekhi Mat. Nauk, 77:5(467) (2022), 3–52; Russian Math. Surveys, 77:5 (2022) …

Adapted Wasserstein distances and stability in mathematical finance

J Backhoff-Veraguas, D Bartl, M Beiglböck… - Finance and …, 2020 - Springer
Assume that an agent models a financial asset through a measure ℚ with the goal to
price/hedge some derivative or optimise some expected utility. Even if the model ℚ is …

Convergence of adapted empirical measures on

B Acciaio, S Hou - The Annals of Applied Probability, 2024 - projecteuclid.org
We consider empirical measures of R d-valued stochastic process in finite discrete-time. We
show that the adapted empirical measure introduced in the recent work (Ann. Appl. Probab …

All adapted topologies are equal

J Backhoff-Veraguas, D Bartl, M Beiglböck… - Probability Theory and …, 2020 - Springer
A number of researchers have introduced topological structures on the set of laws of
stochastic processes. A unifying goal of these authors is to strengthen the usual weak …

Small transformers compute universal metric embeddings

A Kratsios, V Debarnot, I Dokmanić - Journal of Machine Learning …, 2023 - jmlr.org
We study representations of data from an arbitrary metric space χ in the space of univariate
Gaussian mixtures equipped with a transport metric (Delon and Desolneux 2020). We prove …

The Wasserstein space of stochastic processes

D Bartl, M Beiglböck, G Pammer - Journal of the European Mathematical …, 2024 - ems.press
Wasserstein distance induces a natural Riemannian structure for the probabilities on the
Euclidean space. This insight of classical transport theory is fundamental for tremendous …

Sig-SDEs model for quantitative finance

IP Arribas, C Salvi, L Szpruch - … of the First ACM International Conference …, 2020 - dl.acm.org
Mathematical models, calibrated to data, have become ubiquitous to make key decision
processes in modern quantitative finance. In this work, we propose a novel framework for …